The FMI series motors by Rozum Robotics rely on the advanced brushless technology to meet the requirements of robotics and other precision drive applications. Minimized wearable parts, increased efficiency, enhanced controllability and safety—those are major advantages of the engine setup. What places the FMI drives on a par with similar competitor products?
In the basic configuration, FMI engines are sold as frameless encoder-ready stator and rotor kits. Suitable for use either as direct drives or embedded motion hubs. With the frameless kit design and a hollow shaft, the actuators allow for remarkable mounting flexibility and space-saving integration.
The company boasts a staff of experienced hardware and embedded engineers who use advanced software tools to make design calculations and optimize engine performance.
So far, the R&D team’s efforts have helped to achieve the following:
Rozum Robotics knows it firsthand that finding reliable suppliers is key to building a smooth manufacturing flow. Counting in the factor is crucial to provide quality output and meet delivery deadlines.
A database of reputable suppliers was created, comprising those who have proven expertise and extensive experience in related fields. Simultaneously, a strategy was adopted, aiming at localization of component production within the company’s own premises. For now, the components of FMI engines are mostly manufactured and assembled in-house, whereas suppliers act as vendors of consumables—metal, magnets, wiring, etc.
To manufacture its frameless motor and stator kits, Rozum Robotics utilizes first-rate raw materials. These include copper wiring and rare-earth rotor magnets contributing to magnetic field strength, as well as electrical steel plates making up the stator lamination stack.
From design to shipment, the entire manufacturing process is under Rozum Robotics’ stringent control. The company has introduced a multistage product delivery flow, with each stage completed in three to five iterations. The production management method enables to deliver fast, while improving the output on-the-go.
At the end of each iteration, the team verifies acquired results against predefined objectives and makes changes when and as needed. The final and obligatory step at every stage is quality control. The last milestone in the delivery flow is acceptance testing in a specialized stand to confirm motor compliance with requirements and specifications.
After R&D calculations are refined and drawings are revised as appropriate, the FMI manufacturing flow migrates to the company’s workshop. Below is a general sequence of how an FMI motor “rolls off the conveyor.” The starting operation is precision laser cutting in a CNC machine to get stator plates with a specific tooth profile. Varying the profile of the coil-supporting teeth in the stator allows to optimize performance of FMI engines.
Once the stator plates are cut, they are assembled and welded into a lamination stack. In standard FMI models, the stack is 20 mm high. On the upper and lower side, isolation pads are installed to prevent any damage to copper coils in the course of winding.
The next step is winding copper coils onto the stator teeth. The winding pattern, method, and total turns play a role. The denser the coiling, the higher torque an actuator can generate.
As soon as the winding operation is complete, the stack is rolled up into a ring and welded along the mating line. The wiring ends from the coils on the stator teeth are laid to form a three-phase Y-configuration power output, enabling to pack more power into the engine. For thermal protection, an NTC thermistor is embedded into the FMI stator winding, enabling overtemperature cutoff.
The assembled stack with copper winding is then cast with a compound, which is intended to upgrade thermal performance of the FMI frameless engines. Compound casting is the last operation to deliver the stator in its ready-for-use form.
The next workflow stage is assembling the rotor—i.e., gluing magnets onto a support ring, observing the pole alternation sequence.
Keeping the entire production flow within in-house workshops, Rozum Robotics can track compliance with quality standards end-to-end. Whether it is purchasing consumables, or assembling components, or after-sales servicing, each stage is under the spotlight. As a result, we can state proudly—our motors deliver reliable power, at the state-of-the-art level.
Need more technical details or a consultation on customization? Leave us a message — and we will get back to you in the shortest time
Send a message
We will send you the ROI calculator for PULSE75 within the next 24 hours.