A DC or AC gearmotor can either have in-line or right-angle gearing configuration. In-line modifications have lower backlash, thus providing more efficient speed-to-torque conversion and enhanced positioning accuracy. Their specific feature is an output shaft aligned with the motor shaft to form one line. In-line reduction gears are typically less expensive than reducers of the right-angle configuration.
As evident from the name, a gearmotor is a DC or AC electromotor merged with a gear train into a single housing. The train is a simple mechanism meant to reduce the rotational speed of an engine, while increasing its torque. On the inside, it comprises a set of gears engaging with each other to create a mechanical advantage expressed as a gearhead (reduction) ratio. The value quantifies to what extent the train can affect the rotational force of a gearmotor. For instance, when applied to a 100 RPM and 10 Nm motor, the ratio of 1:10 enables achieving the output of about 100 Nm, less gearbox efficiency losses.
Apart from multiplying the moment of force, a gearhead allows to balance load inertia against that of the motor. With a reduction gear, initial load inertia to be handled by a gearmotor during operation is decremented by the square root of the reduction ratio. The balancing enhances responsiveness and throughput of a motion solution as a whole, while eliminating overshoot and settling time issues.
Though a widely used alternative torque-boosting method is to mount a stand-alone gearhead at a distance from a motor, purchasing a gearmotor provides tangible benefits, such as:
Designing and implementing powertrains gives fewer problems, while consuming less time and money. Engineers no longer have to waste effort on complex calculations to select and size up a gearbox to match a motor, which cuts related expenses. Another bonus is a chance to avoid failures due to miscalculations or incorrect installation.
In a gearmotor, the gearhead and the motor are already a seamless whole. Therefore, no additional couplings or other arrangements are needed to connect them. This eliminates misalignment problems, thus preventing deteriorated bearing performance and reduced service life of a powertrain.
The motion hub of a gearmotor is a DC or AC motor. Besides running under different currents varieties—direct and alternating accordingly, the two varieties are dissimilar in the following:
Operation principle
DC motors have a rotating power-producing component—the rotor. The magnetic field generated by the stator remains unmoving, just as the stator itself. With AC gearmotors, it is otherwise: the armature is stationary, while the magnetic field spins permanently.
Velocity regulation
Speed control in an AC gearmotor is by changing the supply frequency, often via a drive module. With a DC motor, RPM regulation requires adjusting the rotor velocity, which is proportional to the input voltage.
Given the fundamental distinctions, DC and AC gearmotors have a range of specific features—at times working to their advantage, at times adding to their flaws:
A DC or AC gearmotor can either have in-line or right-angle gearing configuration. In-line modifications have lower backlash, thus providing more efficient speed-to-torque conversion and enhanced positioning accuracy. Their specific feature is an output shaft aligned with the motor shaft to form one line. In-line reduction gears are typically less expensive than reducers of the right-angle configuration.
Output shafts of gearheads with the right-angle configuration are positioned at 90 degrees relative to the engine shaft. Right-angle modifications are preferred where one needs to fit a gearmotor into a tight space.
Worm. A gear set of the type includes a worm with screw-like threading and a wheel resembling a spur. In simple right-angle configuration, the gearing mechanism boast low inertia and insignificant backlash, resulting in increased precision. The mechanism produces considerable static torque, enabling a gearmotor to hold exact positions. However, because of the sliding action, its efficiency is reduced. The specifics of its design makes motion in the reverse direction impossible.
Planetary. A planetary gearhead incorporates a sun gear that drives a number of planetary gearwheels moving inside a larger ring cogwheel. This type features excellent torque output in a small footprint, while providing fine inertia matching to reduce settling time. Its backlash is low, and its power-transmission efficiency is great, with losses not exceeding 3% per stage. Its biggest disadvantages are complex design and excessive bearing loads.
Strain-wave. Strain-wave gearing relies on dynamic elasticity in metals to decrease RPM rates and increase torque. The mechanisms include a wave generator and two splines—a flex one and a circular one. The oval-shaped wave generator contains a bearing and a disk made of steel. The non-rigid part, the flex spline, has teeth on its external outline. The circular spline is stiff, and its teeth are located around its inner diameter—their number equal to the teeth quantity on the flexible part plus two. The mechanism is lightweight and small-size; its backlash is close to zero. With exceptional gearing efficiency, it enables generation of impressive torque quantities. Some of its most notable flaws—inferior torsional stiffness and poor mechanical wear resistance.
Flat or round spur. In a spur gear set, teeth have straight edges and require parallel alignment to function correctly. The mechanism is inexpensive and compact, but capable of delivering high reduction ratios, which makes it ideal for motor systems with space restrictions. Its biggest drawback is noise, which gets real loud closer to maximum velocities. In addition, the wear life of the spur gearbox is short. In addition to the above described types, some classifications mention helical, crown, bevel, hypoid, non-circular, as well as rack-and-pinion and other reduction gear types. The helical, crown, bevel, and hypoid gears differ by pitch surfaces and tooth profiles. The non-circular models have undergone shape optimization to achieve reduced wear, minimum noise and maximum efficiency. The rack-and-pinion type—a combination of a rack and a toothed bar—are used to convert rotation into linear motion.
The RDrive series by Rozum Robotics is a lineup of powerful direct-current gearmotors—a neatly matched combination of brushless AC actuators and strain-wave gearheads. Let’s see what you get for the price of an RDrive actuator:
An extra advantage as compared to a conventional motor is a PCB controller integrated into RDrive engines. The controller makes sure current is supplied to the motion hub in proper quantities and just at the right moment to prevent unnecessary and excessive power consumption.
Need more technical details or a consultation on customization? Leave us a message — and we will get back to you in the shortest time
Send a message
We will send you the ROI calculator for PULSE75 within the next 24 hours.