

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 2 | 52

TABLE OF CONTENTS

WARNING SIGNS AND THEIR MEANINGS ... 4

1 GENERAL DATA .. 5

Glossary .. 6

2 ENABLING ACCESS TO API .. 8

3 DESCRIPTION OF API FUNCTIONS .. 9

3.1 Requests to get parameters and states of the arm (GET) ... 9

3.1.1 Getting the actual arm position ... 9

3.1.2 Getting the actual motion status .. 10

3.1.3 Getting the actual status of servo motors .. 11

3.1.4 Getting the actual arm pose ... 12

3.1.5 Getting actual tool properties .. 13

3.1.6 Getting the actual tool shape ... 14

3.1.7 Getting the actual position of the arm base ... 15

3.1.8 Getting the arm ID .. 16

3.1.9 Getting the signal level on a digital output ... 16

3.1.10 Getting the signal level on a digital input ... 17

3.1.11 Getting data about obstacles in an arm environment .. 18

3.1.12 Getting data about a specific obstacle in the arm environment 21

3.1.13 Getting the hardware versions of the arm components ... 24

3.1.14 Getting the software versions of the arm components .. 24

3.1.15 Getting the arm version ... 25

3.2 Requests to set parameters, states, and actions (PUT, POST) 26

3.2.1 Setting a new arm position .. 26

3.2.2 Setting a new arm pose ... 28

3.2.3 Asking the arm to open the gripper... 29

3.2.4 Asking the arm to close the gripper .. 30

3.2.5 Asking the arm to relax ... 31

3.2.6 Asking the arm to go to the freeze state .. 31

3.2.7 Asking the arm to move to a pose ... 32

3.2.8 Asking the arm to move to a position ... 34

3.2.9 Setting high signal level on a digital output.. 36

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 3 | 52

3.2.10 Setting low signal level on a digital output ... 37

3.2.11 Recovering the arm after an emergency ... 38

3.2.12 Adding an obstacle to the arm’s environment .. 38

3.2.13 Setting the arm into a transportation pose ... 41

3.2.14 Quitting the untwisting mode.. 42

3.2.15 Setting tool properties ... 43

3.2.16 Setting the tool shape .. 45

3.2.17 Setting a new zero point position .. 46

3.3 Requests to delete parameters of the arm (DELETE) .. 47

3.3.1 Removing all obstacles from the arm environment .. 47

3.3.2 Removing a specific obstacle from the arm environment 48

ANNEX 1. RESPONSE/ REQUEST SCHEMAS .. 49

Position schema ... 49

Pose schema ... 49

Motor status array schema .. 49

Tool info schema ... 50

Tool shape schema .. 50

Obstacle schema .. 51

Version schema.. 52

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 4 | 52

WARNING SIGNS AND THEIR MEANINGS

Below are the warning symbols used throughout the manual and explanations of their meanings.

The sign denotes important information that is not directly related to safety, but that the

user should be aware of.

The sign indicates important safety precautions the user should follow.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 5 | 52

1 GENERAL DATA

The REST Application Programming Interface (API) described in this reference guide implements

the functionality for monitoring and controlling motion of the PULSE robotic arm (also, robotic

arm or arm) and its work tool (also, tool).

API requests are in the JSON format; API responses are in the JSON and/or in the plain text format.

All returned values are either double numbers or text strings.

API access for reading and writing motion parameters is based on the HTTP (v 2.0) methods listed

in Table 1-1.

Table 1-1: Supported HTTP methods

Method Purpose

GET

 to get the actual pose / position of the robotic arm (rotation angles and coordinates

of its joints)

 to get the actual state of the robotic arm (e.g., idle)

 to get the actual state of the servo motors in the arm joints (e.g., voltage, rotor

velocity)

 to get actual properties (e.g., rotation angles, position coordinates) and shape of

the work tool

 to get the actual position of the arm base (rotation angles and coordinates)

 to get the unique identifier (ID) of the robotic arm

 to get the signal level (HIGH or LOW) on a digital output

 to get the signal level (HIGH or LOW) on a digital input

 to get data about a single or all obstacles within the arm environment

 to get data about the hardware versions of the arm components

 to get data about the software versions of the arm components

 to get data about the arm version

PUT

 to set/change the pose/position of the robotic arm (rotation angles and

coordinates of its joints)

 to set/change the arm state (e.g., relax or freeze)

 to open the gripper

 to close the gripper

 to set the signal level on a digital output to HIGH or LOW

 to recover the arm after an error

 to add an obstacle to the robot environment for collision detection

 to finish untwisting and quit the untwisting mode

 to set the arm into the transportation pose

POST
 to set properties (e.g., rotation angles, coordinates) and shape of the work tool

 to set a new position (rotation angles and coordinates) of the arm base

DELETE  to remove a single or all obstacles from the arm environment

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 6 | 52

Glossary

Table 1-2 lists and defines essential terms used throughout the reference guide.

Table 1-2: Essential REST API terms

Term Definition

Axis

An axis is a moveable structural component of the PULSE robotic arm

comprising a servomotor to enable its rotation. In all, the PULSE robotic

arm includes six axes located on the robotic arm as illustrated below:

Zero point

It is the origin point for measuring distances along the x, y, and z

coordinate axes. Its original physical location is at the center of the arm

base as shown below.

It is possible to change the zero point location using the

POST/Base request (see Section 3.2.16).

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 7 | 52

Tool center point

(TCP)

It is the point, relative to which all arm poses, positions, and movements

are defined. Its original physical location is at the center of the arm wrist

as shown below.

Using the POST/tool/info request (see Section 3.2.15), you

can relocate the TCP to any position within the tool or

beyond it.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 8 | 52

2 ENABLING ACCESS TO API

You have to enable API access at least once at first switching.

Before you attempt to enable API control, the PULSE arm should be:

 connected to the control box, the work tool, the emergency button

 connected to a local network

 connected to a power supply

 switched on and ready for operation

For connection and switching instructions, refer to HARDWARE INSTALLATION

MANUAL.

To enable API control of the PULSE arm, follow the instructions below:

1. Check that the arm is ready for operation. The green LED on the control box should be

constantly on, and the LED on the arm wrist should be steady green.

2. Start the PULSE DESK user interface as described in the USER MANUAL.

3. In the displayed starting screen of the PULSE DESK interface, click the Main Menu button.

4. In the displayed menu, select Configure. PULSE DESK displays the Configure screen.

The Configure screen

https://rozum.com/pulse-documentation/
https://rozum.com/pulse-documentation/
https://rozum.com/pulse-documentation/

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 9 | 52

5. In the Configure screen, switch the Enable remote API access toggle to the enabled state.

Disabled state Enabled state

6. Click Apply to confirm.

Now, you can proceed to work with available API functions.

3 DESCRIPTION OF API FUNCTIONS

The section describes in detail the REST API functions you can use to control the PULSE robotic

arm and its work tool (a gripper), as well as to monitor the arm's motion parameters.

3.1 Requests to get parameters and states of the arm (GET)

3.1.1 Getting the actual arm position

Path:

GET/position

Description: The function returns the actual position of the PULSE robotic arm, which is

described as a set of x, y, and z coordinates, as well as roll, pitch, and yaw rotation angles. The

coordinates define the actual distance (in meters) from the zero point of the robotic arm to the tool

center point (TCP) along the x, y, and z axes accordingly. Roll stands for the TCP rotation angle

around the x axis; pitch—the TCP rotation angle around the y axis; yaw—the TCP rotation angle

around the z axis. All rotation angles are in radians and relative to the zero point.

Related REST API functions: PUT/position, PUT/positions/run

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK Position schema

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK
{

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

}

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 10 | 52

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.1.2 Getting the actual motion status

Path:

GET/status/motion

Description: The function returns the actual state of the robotic arm. Possible arm states are as

follows:

 IDLE

The arm is not in motion, but is fully functional and ready for operation.

 ZERO_GRAVITY

The arm is in the zero gravity mode, which means the user can move it by hand to set a

motion trajectory.

 RUNNING

The arm is in motion.

 MOTION_FAILED

Motion is impossible due to incorrect motion settings.

 ERROR

The arm stops moving due to an error and goes into the freeze mode, retaining its last position.

The user can recover the arm, using the PUT/recover function.

 EMERGENCY

Motion is impossible due to an emergency. In this case, an emergency is a fatal failure that

causes the control box to switch off and the arm to stop without retaining its position. Recovery

with the PUT/recover function is not possible.

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK
String enum: [IDLE, ZERO_GRAVITY, RUNNING,

MOTION_FAILED, EMERGENCY, ERROR]

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK
 "IDLE"

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 11 | 52

3.1.3 Getting the actual status of servo motors

Path:

GET/status/motors

Description: The function returns the actual states of the six servo motors integrated into the joints

of the robotic arm. The states are described as an array of six objects—one for each servo motor.

Each object includes the following properties:

 Angle—the actual angular position (degrees) of the servo's output flange

 Rotor velocity—the actual rotor velocity (RPM)

 RMS current—the actual input current (Amperes)

 Phase current—the actual magnitude of alternating current (Amperes)

 Supply voltage—the actual supply voltage (Volts)

 Stator temperature—the actual temperature (degrees C) as measured on the stator winding

 Servo temperature—the actual temperature (degrees C) as measured on the MCU PCB

 Velocity setpoint—the user-preset rotor velocity (RPM)

 Velocity output—the motor control current (Amperes) based on the preset velocity

 Velocity feedback—the actual rotor velocity (RPM)

 Velocity error—the difference between the preset and the actual rotor velocities (RPM)

 Position setpoint—the user-preset position of the servo flange (degrees)

 Position output—rotor velocity (RPM) based on the position setpoint

 Position feedback—the actual position of the servo flange (degrees) based on the encoder

feedback

 Position error—the difference between the preset and the actual positions of the servo flange

(degrees)

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK Motor status array schema

500 Internal Server Error String

503 Service Unavailable String

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 12 | 52

Response examples:

 200 OK
[

 {

 "angle": 168.89699,

 "rotorVelocity": -0.00064343837,

 "rmsCurrent": 0.01,

 "voltage": 47.795017,

 "phaseCurrent": 0.01,

 "statorTemperature": 27.990631,

 "servoTemperature": 31.739925,

 "velocityError": -0.022674553,

 "velocitySetpoint": -0.02331799,

 "velocityOutput": 0.01,

 "velocityFeedback": -0.00064343837,

 "positionError": 0.0385437,

 "positionSetpoint": 168.93799,

 "positionOutput": 0.01,

 "positionFeedback": 168.89944

 }

]

The example is one object containing properties for a single servo. In reality, the array

in the response includes six similar objects.

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.1.4 Getting the actual arm pose

Path:

GET/pose

Description: The function returns the actual pose of the robotic arm. An arm pose is a set of output

flange angles (in degrees) of the six servos in the arm joints.

Response content type: application/json, text/plain

Related REST API functions: PUT/pose, PUT/poses/run

Response body:

HTTP status code Response schema/ type

200 OK Pose schema

500 Internal Server Error String

503 Service Unavailable String

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 13 | 52

Response examples:

 200 OK
{

 "angles": [

 61,

 -98,

 -122,

 -49,

 89,

 -28

]

}

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.1.5 Getting actual tool properties

Path:

GET/tool/info

Description: The function returns actual properties of the last tool preset by the user, in particular:

 name — any random name of the work tool defined by the user (e.g., “gripper”).

 actual TCP position, including:

 point — x, y, and z coordinates defining the TCP offset (in meters) along the x, y, and z

axes accordingly from its original location.

 rotation angles — roll, pitch, and yaw. Roll stands for the actual TCP rotation angle

around the x axis; pitch—the actual TCP rotation angle around the y axis; yaw—the

actual TCP rotation angle around the z axis. All rotation angles are in radians and

relative to the physical center point of the arm base.

Related REST API functions: GET/tool/shape, POST/tool/info, POST/tool/shape

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK Tool info schema

500 Internal Server Error String

503 Service Unavailable String

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 14 | 52

Response examples:

 200 OK
{

 "name": "gripper",

 "tcp": {

 "point": {

 "x": 0,

 "y": 0,

 "z": 0.31

 },

 "rotation": {

 "roll": 0,

 "pitch": 0,

 "yaw": 0

 }

 }

 }

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.1.6 Getting the actual tool shape

Path:

GET/tool/shape

Description: The function returns the actual properties defined by the user for a specific tool to

describe the tool shape, in particular:

 radius — radius of the work tool (in meters) measured from its physical center point.

 begin — the start x, y, and z coordinates of the work tool capsule measured as a distance

(in meters) along the corresponding axes from the original TCP.

 finish — the end x, y, and z coordinates of the work tool capsule measured as a distance

(in meters) along the corresponding axes from the original TCP.

Related REST API functions: GET/tool/info, POST/tool/info, POST/tool/shape

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK Tool shape schemaTool info schema

500 Internal Server Error String

503 Service Unavailable String

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 15 | 52

Response examples:

 200 OK
{

 "shape": [

 {

 "radius": 0.03,

 "begin": {

 "x": 0,

 "y": 0,

 "z": 0

 },

 "endPoint": {

 "x": 0,

 "y": 0,

 "z": 0.24

 }

 }

]

 }

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.1.7 Getting the actual position of the arm base

Path:

GET/base

Description: The function returns the actual position of the arm's zero point in the user

environment. The actual zero point position is described as a set of x, y, and z coordinates, as well

as roll, pitch, and yaw rotation angles. The coordinates define the offset (in meters) from the

physical center point of the arm base (original zero point) to the actual zero point position along

the x, y, and z axes accordingly. Roll stands for the rotation angle around the x axis; pitch—the

rotation angle around the y axis; yaw—the rotation angle around the z axis. All rotation angles are

in radians and relative to the physical center point of the arm base.

Related REST API functions: POST/base

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK Position schema

500 Internal Server Error String

503 Service Unavailable String

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 16 | 52

Response examples:

 200 OK
{

 "point": {

 "x": 0.3,

 "y": -0,4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

}

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.1.8 Getting the arm ID

Path:

GET/robot/id

Description: The function returns the unique identifier (ID) of the robotic arm. The ID is an

alphanumeric designation that consists of individual servo motor identifications.

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK String

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK
"1346466AFG872"

 500 Internal Server Error
"Robot does not respond"

 503 Service Unavailable
"Robot unavailable in emergency state"

3.1.9 Getting the signal level on a digital output

Path:

GET/signal/output/{port}

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 17 | 52

Description: The function returns the actual signal level on the digital output specified in

the {port} parameter of the request path.

ATTENTION! SPECIFYING THE {port} PARAMETER IS MANDATORY!

A digital output is a physical port on the back panel of the control box. Since the control box has

two digital outputs, the parameter value can be either 1 (corresponds to Relay output 1) or

2 (corresponds to Relay output 2).

The function returns either of the following values:

 LOW—default user-defined state (e.g., LED off)

 HIGH—change of the user defined state (e.g., LED on)

For location of digital outputs, refer to the Hardware Installation Manual.

Related REST API functions: PUT/signal/output/{port}/high, PUT /signal/output/{port}/low

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK string enum: [HIGH, LOW]

412 Precondition Failed String

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK
"HIGH"

 412 Precondition Failed
"Unable parameter value {13}"

 500 Internal Server Error
"Robot does not respond"

 503 Service Unavailable
"Robot unavailable in emergency state"

3.1.10 Getting the signal level on a digital input

Path:

GET/signal/input/{port}

Description: The function returns the actual signal level on the digital input specified in the {port}

parameter of the request path.

ATTENTION! SPECIFYING THE {port} PARAMETER IS MANDATORY!

A digital input is a physical port on the back panel of the control box. Since the control box has

four digital inputs (DI), the parameter can have any integral value between 1 (corresponds to DI1)

and 4 (corresponds to DI4).

https://rozum.com/tpl/pdf/ARM/PULSE%20robot_HARDWARE%20INSTALLATION%20MANUAL.pdf

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 18 | 52

The function returns either of the following values:

 LOW—default user-defined state

 HIGH—change of the user defined state

For location of digital outputs, refer to the Hardware Installation Manual.

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK string enum: [HIGH, LOW]

412 Precondition failed String

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK
"HIGH",

"LOW"

 412 Precondition Failed
"Unable parameter value {13}"

 500 Internal Server Error
"Robot does not respond"

 503 Service Unavailable
"Robot unavailable in emergency state"

3.1.11 Getting data about obstacles in an arm environment

Path:

GET/environment

Description: The function returns data about all obstacles preset within the arm’s environment.

An obstacle is any object, such as a control box or a wall, in the way of an arm to be taken into

consideration for collision detection. An obstacle can be one of the following types:

 BOX— typically used to describe obstacles with a shape reminding that of a box.

 CAPSULE—preferred for objects of cylindrical shape or having complex structure and

irregular outlines. To describe an obstacle of complex structure, it is possible to use

multiple capsules.

 PLANE—recommended for describing plain-surface objects, such as a wall or a table.

Depending on the total quantity of obstacles preset in a given environment, the response of the

function can contain one or more data arrays. Each array comprises the following data:

 Obstacle type—a geometric pattern, roughly describing the shape of an obstacle for

collision detection purposes—BOX, CAPSULE, and PLANE.

https://rozum.com/pulse-documentation/

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 19 | 52

 Name—any random name as defined by the user for a specific obstacle type (e.g.,

“first_box”).

 Obstacle properties—spatial location and/or dimensions of a specific obstacle.

Each obstacle type has its own set of properties as described in the table below.

Type Properties

BOX

- sides—the x, y, and z coordinates defining the dimensions of an obstacle

(i.e., length, width, depth).

- position—a set of the x, y, and z coordinates, as well as roll, pitch and yaw

angles defining the location of an obstacle in space.

The coordinate values are distances (in meters) along the x, y, and z axes

accordingly, measured from the obstacle’s center point relative to the zero

point (see Glossary).

Roll, pitch and yaw are rotation angles (in radians) of the obstacle’s center

point relative to the zero point.

CAPSULE

- radius—the radius (in meters) of the capsule shape incorporating an

obstacle, measured from the obstacle’s center point

- start point—the starting x, y, and z coordinates (in meters) of the capsule

shape length relative to the zero point

- end point—the end x, y, and z coordinates (in meters) of the capsule shape

length relative to the zero point

PLANE
- points—at least three points constituting a single plane; each of the points

is described as a set of x, y, and z coordinates (in meters) on the plane

Related REST API functions: GET/environment/{obstacle}, PUT/environment,

DELETE/environment, DELETE/environment/{obstacle}

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK Obstacle schema

500 Internal Server Error String

503 Service Unavailable String

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 20 | 52

Response examples:

 200 OK

 [

 {

 "obstacleType": "BOX",

 "name": "example_box",

 "sides": {

 "x": 0.1,

 "y": 0.1,

 "z": 0.1

 },

 "position": {

 "point": {

 "x": 1,

 "y": 1,

 "z": 1

 },

 "rotation": {

 "roll": 0,

 "pitch": 0,

 "yaw": 0

 }

 }

 },

 {

 "obstacleType": "CAPSULE",

 "name": " example_capsule",

 "radius": 0.1,

 "startPoint": {

 "x": 0.5,

 "y": 0.5,

 "z": 0.2

 },

 "endPoint": {

 "x": 0.5,

 "y": 0.5,

 "z": 0.2

 }

 },

 {

 "obstacleType": "PLANE",

 "name": "example_plane",

 "points": [

 {

 "x": -0.5,

 "y": 0.2,

 "z": 0

 },

 {

 "x": -0.5,

 "y": 0,

 "z": 0

 },

 {

 "x": -0.5,

 "y": 0,

 "z": 0.1

 },
]

 }

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 21 | 52

 500 Internal Server Error
"Robot does not respond"

 503 Service Unavailable
"Robot unavailable in emergency state"

3.1.12 Getting data about a specific obstacle in the arm environment

Path:

GET/environment/{obstacle}

Description: The function returns data about the obstacle specified in the {obstacle} parameter of

the request path.

ATTENTION! SPECIFYING THE {obstacle} PARAMETER IS MANDATORY!

An obstacle is any object, such as a control box or a wall, in the way of an arm to be taken into

consideration for collision detection.

An obstacle can be one of the following types:

 BOX— typically used to describe obstacles with a shape reminding that of a box.

 CAPSULE—preferred for objects of cylindrical shape or having complex structure and

irregular outlines. In the latter two cases, it is also possible to describe an obstacle using

multiple capsules.

 PLANE—recommended for describing plain-surface objects, such as a wall or a table.

For this REST API request, the {obstacle} parameter in the request path can contain

no more than a single object (e.g., box 1).

The response of the function contains a single data array comprising the following:

 Obstacle type—a geometric pattern, roughly describing the shape of an obstacle for

collision detection purposes— BOX, CAPSULE, and PLANE.

 Name—any random name as defined by the user for a specific obstacle type (e.g.,

“first_box”).

 Obstacle properties—spatial location and / or dimensions of a specific obstacle

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 22 | 52

Each obstacle type has its own set of properties as described in the table below.

Obstacle

type

Obstacle properties

BOX

- sides—the x, y, and z coordinates defining the spatial dimensions of an

obstacle (i.e., length, width, depth).

- position—a set of the x, y, and z coordinates, as well as roll, pitch and

yaw angles defining the location of an obstacle in space.

The coordinate values are distances (in meters) along the x, y, and z axes

accordingly, measured from the obstacle’s center point relative to the

zero point (see Glossary).

Roll, pitch and yaw are rotation angles (in radians) of the obstacle’s

center point relative to the zero point.

CAPSULE

- radius—the radius (in meters) of the capsule shape incorporating an

obstacle, measured from the obstacle’s center point

- start point—the starting x, y, and z coordinates (in meters) of the

capsule shape length relative to the zero point

- end point—the end x, y, and z coordinates (in meters) of the capsule

shape length relative to the zero point

PLANE

- points—at least three points constituting a single plane; each of the

points is described as a set of x, y, and z coordinates (in meters) on the

plane

Related REST API functions: GET/environment, PUT/environment, DELETE/environment,

DELETE/environment/{obstacle}

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK Obstacle schema

500 Internal Server Error String

503 Service Unavailable String

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 23 | 52

Response examples:

 200 OK
 [

 {

 "obstacleType": "BOX",

 "name": "example_box",

 "sides": {

 "x": 0.1,

 "y": 0.1,

 "z": 0.1

 },

 "position": {

 "point": {

 "x": 1,

 "y": 1,

 "z": 1

 },

 "rotation": {

 "roll": 0,

 "pitch": 0,

 "yaw": 0

 }

 }

 },

 {

 "obstacleType": "CAPSULE",

 "name": " example_capsule",

 "radius": 0.1,

 "startPoint": {

 "x": 0.5,

 "y": 0.5,

 "z": 0.2

 },

 "endPoint": {

 "x": 0.5,

 "y": 0.5,

 "z": 0.2

 }

 },

 {

 "obstacleType": "PLANE",

 "name": "example_plane",

 "points": [

 {

 "x": -0.5,

 "y": 0.2,

 "z": 0

 },

 {

 "x": -0.5,

 "y": 0,

 "z": 0

 },

 {

 "x": -0.5,

 "y": 0,

 "z": 0.1

 },
]

 }

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 24 | 52

 500 Internal Server Error
"Robot does not respond"

 503 Service Unavailable
"Robot unavailable in emergency state"

3.1.13 Getting the hardware versions of the arm components

Path:

GET/version/hardware

Description: The function returns the hardware versions for all motors in the arm joints, as well

as hardware versions for the USB-CAN dongle, the safety board, and the wrist.

Related REST API functions: GET/version/software, GET/version/software/robot

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK Version schema

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK
{

"motorsVersion": [

"string"

],

"safetyVersion": "string",

"usbCanVersion": "string",

"wristVersion": "string"

}

 500 Internal Server Error
"Robot does not respond"

 503 Service Unavailable
"Robot unavailable in emergency state"

3.1.14 Getting the software versions of the arm components

Path:

GET/version/software

Description: The function returns the software versions for all motors in the arm joint, as well as

software versions for the USB-CAN dongle, the safety board, and the wrist.

Related REST API functions: GET/version/hardware, GET/version/software/robot

Response content type: application/json, text/plain

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 25 | 52

Response body:

HTTP status code Response schema/ type

200 OK Version schema

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK
{

"motorsVersion": [

"string"

],

"safetyVersion": "string",

"usbCanVersion": "string",

"wristVersion": "string"

}

 500 Internal Server Error
"Robot does not respond"

 503 Service Unavailable
"Robot unavailable in emergency state"

3.1.15 Getting the arm version

Path:

GET/version/software/robot

Description: The function returns the version of the arm’s core software.

Related REST API functions: GET/version/hardware, GET/version/software

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK String

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK

"1.4.3-release"

 500 Internal Server Error
"Robot does not respond"

 503 Service Unavailable
"Robot unavailable in emergency state"

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 26 | 52

3.2 Requests to set parameters, states, and actions (PUT, POST)

3.2.1 Setting a new arm position

Path:

PUT/position

Description: The function commands the arm to move to a new position. The position is described

as a set of x, y, and z coordinates, as well as roll, pitch, and yaw rotation angles. The coordinates

define the desired distance (in meters) from the zero point to the TCP along the x, y, and z axes

accordingly. Roll stands for the desired TCP rotation angle around the x axis; pitch—the desired

TCP rotation angle around the y axis; yaw—the desired TCP rotation angle around the z axis. All

rotation angles are in radians and relative to the zero point.

Related REST API functions: GET/position, PUT/positions/run

Request content type: application/json

Request parameters:

Parameter Description

speed

The parameter sets the speed (in % max speed) at which the arm should move

to the required position. The admissible value range is from 1 to 100.

ATTENTION! SPECIFYING THE “speed” PARAMETER IS

MANDATORY OTHERWISE AN ERROR IS GENERATED.

Type: number (double)

Included as: query

type

The parameter sets the type of motion the arm should use to get to the

required position. Admissible values are as follows:

 JOINT
When set to this motion type, the arm moves to the specified position

along a trajectory that has been calculated as the most convenient

one. The trajectory can be described as a set of joint angles connected

into a curve.

 LINEAR
When the motion type is LINEAR, the arm moves to the specified

position along a straight line. This motion takes more time than with

the type parameter set to JOINT. However, the trajectory is entirely

predictable, unlike with the JOINT type motion.

When the user specifies no value for the parameter, it is set to the default

one—JOINT.

Included as: query

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 27 | 52

tcp_max_velocity

The parameter defines the limit velocity in meters per second that an end

effector can reach at its TCP while moving.

It is not mandatory. When the user specifies no value for it, it is set to default.

The default setting is 2 m/s. The admissible value range is from 0.001 to

2 m/s.

Included as: query

Request body: The request body is in accordance with the Position schema. It specifies the

coordinates (x, y, z) and rotation angles (roll, pitch, yaw) that describe the required TCP position.

Make sure to specify all point (x, y, z coordinates) and rotation (roll, pitch, yaw)

properties in the request body. When at least one of the properties is not specified, the

function returns a 400 Bad Request error.

Request example:
{

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

}

Response content type: application/json, text/plain

Response body:

HTTP status code Description Response schema/ type

200 OK Actual arm position Position schema

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Arm error String

503 Service unavailable Arm emergency String

Response examples:

 200 OK
{

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

}

 400 Bad Request
 "Incorrect format of input Message"

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 28 | 52

 412 Precondition Failed
 "Unreachable Position",

 "Collision detected"

 "Invalid velocity parameter: is not in (0, 2] range",

 "Not present"

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.2.2 Setting a new arm pose

Path:

PUT/pose

Description: The function commands the arm to move to a new pose. A pose is as a set of output

flange angles (in degrees) of the six servos integrated into the arm joints.

Related REST API functions: GET/pose, PUT/poses/run

Request body: The request body is in accordance with the Pose schema. It specifies the angles

that each of the six servos should reach to move the arm to the required pose.

Request type: application/json

Request parameters:

Parameter Description

speed

The parameter sets the speed (in % max. speed) at which servos should move to

the required angles. The admissible value range is from 1 to 100.

ATTENTION! SPECIFYING THE “speed” PARAMETER IS MANDATORY

OTHERWISE AN ERROR IS GENERATED.

Type: number (double)

Included as: query

type

(for continuation, see

the next page)

The parameter sets the type of motion the arm should use to get into the specified

pose. Admissible values are as follows:

 JOINT

When set to this motion type, the arm moves to the specified pose along a

trajectory that has been calculated as the most convenient one. The trajectory

can be described as a set of joint angles connected into a curve.

 LINEAR

When the motion type is LINEAR, the arm moves to the specified pose along

a straight line. This motion takes more time than with the type parameter set to

JOINT. However, the trajectory is entirely predictable, unlike with the JOINT

type motion.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 29 | 52

type
(continued)

When the user specifies no value for the parameter, it is set to the default one—

JOINT.

Included as: query

tcp_max_velocity

The parameter defines the limit velocity in meters per second that an end effector

can reach at its TCP while moving.

It is not mandatory. When the user specifies no value for it, it is set to default.

The default setting is 2 m/s. The admissible value range is from 0.001 to 2 m/s.

Included as: query

Request example:
 {

 "angles": [

 61,

 -98,

 -122,

 -49,

 89,

 -28

]

 }

Response body:

HTTP status code Description Response schema/ type

200 OK Success -

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Arm error String

503 Service unavailable Arm emergency String

Response examples:

 400 Bad Request
 "Incorrect format of input Message"

 412 Precondition Failed
 "Unreachable Position",

 "Collision detected"

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.2.3 Asking the arm to open the gripper

Path:

PUT/gripper/open

Description: The function commands the arm to open the gripper. It has no request body, but the

user can optionally set one parameter—timeout.

Related REST API functions: PUT/gripper/close

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 30 | 52

Request parameter:

Parameter Description

timeout

The parameter specifies how long (in milliseconds) the arm should remain idle,

waiting for the gripper to open. The default manufacturer-preset value is 500 ms.

Admissible value range: integers from 1 and above

When the parameter setting is out of the admissible range, it is

replaced automatically with the default value.

Type: number (int32)

Included as: query

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK -

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.2.4 Asking the arm to close the gripper

Path:

PUT/gripper/close

Description: The function commands the arm to close the gripper. It has no request body, but the

user can optionally set one parameter—timeout.

Related REST API functions: PUT/gripper/open

Request parameter:

Parameter Description

timeout

The parameter specifies how long (in milliseconds) the arm should remain idle,

waiting for the gripper to close. The default manufacturer-preset value is 500 ms.

Admissible value range: integers from 1 and above

When the parameter setting is incorrect, put of the admissible range,

to comply with the request, it is replaced automatically with the default

value.

Type: number (int32)

Included as: query

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 31 | 52

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK String

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.2.5 Asking the arm to relax

Path:

PUT/relax

Description: The function sets the arm in the "relaxed" state. The arm stops moving without

retaining its last position. In this state, the user can move the robotic arm by hand (e. g., to verify/

test a motion trajectory).

Related REST API functions: PUT/freeze

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK -

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.2.6 Asking the arm to go to the freeze state

Path:

PUT/freeze

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 32 | 52

Description: The function sets the arm in the “freeze” state. The arm stops moving, retaining its

last position.

 In the state, it is not advisable to move the arm by hand as this can cause damage.

Related REST API functions: PUT/relax

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK -

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.2.7 Asking the arm to move to a pose

Path:

PUT/poses/run

Description: The function allows for setting a trajectory of one or more waypoints to move the

robotic arm smoothly from one pose to another. In the trajectory, each waypoint is a set of output

flange angles (in degrees) of the six servos in the arm joints.

Note: Similarly, you can move the arm from one pose to another through one or more waypoints

using the PUT/pose function. When the arm is executing a trajectory of PUT/pose waypoints, it

stops for a short moment at each preset waypoint. With the PUT/poses/run function, the arm

moves smoothly though all waypoints without stopping, which reduces the overall time of going

from one pose to another.

Related REST API functions: PUT/pose, GET/pose

Request body: The request body is in accordance with the Pose schema. It specifies the angles

that each of the six servos should reach to move the arm through a number of waypoints to a new

pose.

Request content type: application/json

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 33 | 52

Request parameters:

Parameter Description

speed

The parameter sets the speed (in % max. speed) at which servos should move

to the required angles. The admissible value range is from 1 to 100.

ATTENTION! SPECIFYING THE “speed” PARAMETER IS

MANDATORY OTHERWISE AN ERROR IS GENERATED.

Type: number (double)

Included as: query

type

The parameter sets the type of motion the arm should use to get to the specified

pose through one or more waypoints. Admissible values are as follows:

 JOINT
When set to this motion type, the arm moves from one waypoint to

another along a trajectory that has been calculated as the most convenient

one. The trajectory can be described as a set of joint angles connected into

a curve.

 LINEAR
When the motion type is LINEAR, the arm moves from one waypoint to

another along a straight line. This motion takes more time than with the

type parameter set to JOINT. However, the trajectory is entirely

predictable, unlike with the JOINT type motion.

When the user specifies no value for the parameter, it is set to the default one—

JOINT.

Included as: query

tcp_max_velocity

The parameter defines the limit velocity in meters per second that an end

effector can reach at its TCP while moving.

It is not mandatory. When the user specifies no value for it, it is set to default.

The default setting is 2 m/s. The admissible value range is from 0.001 to

2 m/s.

Included as: query

Request example:

[

 {

 "angles": [

 61,

 -98,

 -122,

 -49,

 89,

 -28

]

 }

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 34 | 52

Response body:

HTTP status code Description Response schema/ type

200 OK Success -

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Arm error String

503 Service Unavailable Arm emergency String

Response content type: text/plain

Response examples:

 200 OK

 400 Bad Request
 "Incorrect format of input Message"

 412 Precondition Failed
 "Unreachable Pose",

 "Collision detected"

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.2.8 Asking the arm to move to a position

Path:

PUT/positions/run

Description: The function allows for setting a trajectory of one or more waypoints to move the

robotic arm smoothly from one position to another. In the trajectory, each waypoint is described

as a set of x, y, and z coordinates, as well as roll, pitch, and yaw rotation angles. The coordinates

define the desired distance (in meters) from the zero point to the TCP along the x, y, and z axes

accordingly. Roll stands for the desired TCP rotation angle around the x axis; pitch—the desired

TCP rotation angle around the y axis; yaw—the desired TCP rotation angle around the z axis. All

rotation angles are in radians.

Note: Similarly, you can move the arm from one position to another through one or more

waypoints using the PUT/position request. When the arm is executing a trajectory of PUT/position

waypoints, it stops for a short moment at each preset waypoint. With the PUT/positions/run

function, the arm moves smoothly though all waypoints without stopping, which reduces the

overall time of going from one position to another.

Related REST API functions: PUT/position, PUT/positions/run

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 35 | 52

Request body: The request body is in accordance with the Position schema. It specifies the

coordinates (x, y, z) and rotation angles (roll, pitch, yaw) of all the waypoints on the trajectory

from the initial TCP position to the required one.

Make sure to specify all point (x, y, z) and rotation (roll, pitch, yaw) properties in the

request body. Otherwise, the function returns a 400 Bad Request error.

Request type: application/json

Request parameters:

Parameter Description

speed

The parameter sets the speed (in % max speed) at which the arm should move

to the required position. The admissible value range is from 1 to 100.

ATTENTION! SPECIFYING THE “speed” PARAMETER IS

MANDATORY OTHERWISE AN ERROR IS GENERATED.

Type: number (double)

Included as: query

type

The parameter sets the type of motion the arm should use to get to the specified

position through one or more waypoints. Admissible values are as follows:

 JOINT
When set to this motion type, the arm moves from one waypoint to another

along a trajectory that has been calculated as the most convenient one. The

trajectory can be described as a set of joint angles connected into a curve.

 LINEAR
When the motion type is LINEAR, the arm moves from one waypoint to

another along a straight line. This motion takes more time than with the

type parameter set to JOINT. However, the trajectory is entirely

predictable, unlike with the JOINT type motion.

When the user specifies no value for the parameter, it is set to the default one—

JOINT.

Included as: query

tcp_max_velocity

The parameter defines the limit velocity in meters per second that an end

effector can reach at its TCP while moving.

It is not mandatory. When the user specifies no value for it, it is set to default.

The default setting is 2 m/s. The admissible value range is from 0.001 to

2 m/s.

Included as: query

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 36 | 52

Request example:

[

 {

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

 }

]

Response body:

HTTP status code Description Response schema/ type

200 OK Success -

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Arm error String

503 Service Unavailable Arm emergency String

Response examples:

 200 OK

 400 Bad Request
 "Incorrect format of input Message"

 412 Precondition Failed
 "Unreachable Position",

 "Collision detected,"

 "Invalid velocity parameter: is not in (0, 2] range",

 "Not present"

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.2.9 Setting high signal level on a digital output

Path:

PUT/signal/output/{port}/high

Description: The function sets the digital output specified in the {port} parameter of the request

path to the HIGH signal level.

ATTENTION! SPECIFYING THE {port} PARAMETER IS MANDATORY!

A digital output is a physical port on the back panel of the control box. Since the control box has

two digital outputs, the parameter value can be either 1 (corresponds to Relay output 1) or 2

(corresponds to Relay output 2).

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 37 | 52

For location of the digital outputs, refer to the document Hardware Installation

Manual.

Related REST API functions: GET/signal/output/{port}, PUT /signal/output/{port}/low

Response content type: text/plain, application/json

Response body:

HTTP status code Response schema/ type

200 OK -

412 Precondition Failed Incorrect input parameters

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK

 412 Precondition Failed
 "Unable parameter value {13}"

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.2.10 Setting low signal level on a digital output

Path:

PUT /signal/output/{port}/low

Description: The function sets the digital output specified in the {port} parameter of the request

path to the LOW signal level.

ATTENTION! SPECIFYING THE {port} PARAMETER IS MANDATORY!

A digital output is a physical port on the back panel of the control box. Since the control box has

two digital outputs, the parameter value can be either 1 (corresponds to Relay output 1) or

2 (corresponds to Relay output 2). For location of the digital outputs and their detailed description,

refer to the document Hardware Installation Manual.

Related REST API functions: PUT/signal/output/{port}/high, GET/signal/output/{port}

Response content type: text/plain, application/json

Response body:

HTTP status code Response schema/ type

200 OK String

412 Precondition Failed Incorrect input parameters

500 Internal Server Error String

503 Service Unavailable String

https://rozum.com/pulse-documentation/
https://rozum.com/pulse-documentation/
https://rozum.com/pulse-documentation/

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 38 | 52

Response examples:

 200 OK

 412 Precondition Failed
 "Unable parameter value {13}"

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.2.11 Recovering the arm after an emergency

Path:

PUT/recover

Description: The function recovers the arm after an emergency, setting its motion status to

IDLE. Recovery is possible only after an emergency that is not fatal (a non-fatal error

corresponds to the ERROR status) (see GET/status/motion).

With the 200 OK status code, the function returns either of two values:

 SUCCESS—the recovery has been completed as appropriate

 FAILED—the recovery has failed

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK String enum: [SUCCESS, FAILED]

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK
 "SUCCESS",

 "FAILED"

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.2.12 Adding an obstacle to the arm’s environment

Path:

PUT/environment

Description: The function enables adding obstacles to the environment of a robotic arm for

collision detection purposes.

An obstacle is any object, such as a control box or a wall, in the way of an arm to be taken into

consideration for collision detection. An obstacle can be one of the following types:

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 39 | 52

 BOX— typically used to describe obstacles with a shape reminding that of a box.

 CAPSULE—preferred for objects of cylindrical shape or having complex structure and

irregular outlines. In the latter two cases, it is also possible to describe an obstacle using

multiple capsules.

 PLANE—recommended for describing plain-surface objects, such as a wall or a table.

After a power-off, any obstacle settings for a specific environment are reset to defaults

(cleared from the device memory).

Note: With a single PUT/environment request, it is possible to add only one obstacle. To add

multiple obstacles, create and send the required quantity of PUT/environment requests.

Request body: The request body is in accordance with the Obstacle schema and contains a single

data array comprising the following:

 Obstacle type—a geometric pattern, roughly describing the shape of an obstacle for

collision detection purposes— BOX, CAPSULE, and PLANE.

 Name—any random name as defined by the user for a specific obstacle type (e.g.,

“first_box”).

 Obstacle properties—spatial location in space and / or dimensions of a specific obstacle.

Each obstacle type has its own set of properties as described in the table below.

Type Properties

BOX

- sides—the x, y, and z coordinates defining the spatial dimensions of an

obstacle (i.e., length, width, depth).

- position—a set of the x, y, and z coordinates, as well as roll, pitch and yaw

angles defining the location of an obstacle in space.

The coordinate values are distances (in meters) along the x, y, and z axes

accordingly, measured from the obstacle’s center point relative to the zero

point (see Glossary).

Roll, pitch and yaw are rotation angles (in radians) of the obstacle’s center

point relative to the zero point.

CAPSULE

- radius—the radius (in meters) of the capsule shape incorporating an

obstacle, measured from the obstacle’s center point

- start point—the starting x, y, and z coordinates (in meters) of the capsule

shape length relative to the zero point

- end point—the end x, y, and z coordinates (in meters) of the capsule shape

length relative to the zero point

PLANE - points—at least three points constituting a single plane; each of the points

is described as a set of x, y, and z coordinates (in meters) on the plane

Related REST API functions: GET/environment, GET/environment/{obstacle},

DELETE/environment, DELETE/environment/{obstacle}

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 40 | 52

Request example:

 [

 {

 "obstacleType": "BOX",

 "name": "example_box",

 "sides": {

 "x": 0.1,

 "y": 0.1,

 "z": 0.1

 },

 "position": {

 "point": {

 "x": 1,

 "y": 1,

 "z": 1

 },

 "rotation": {

 "roll": 0,

 "pitch": 0,

 "yaw": 0

 }

 }

 },

 {

 "obstacleType": "CAPSULE",

 "name": " example_capsule",

 "radius": 0.1,

 "startPoint": {

 "x": 0.5,

 "y": 0.5,

 "z": 0.2

 },

 "endPoint": {

 "x": 0.5,

 "y": 0.5,

 "z": 0.2

 }

 },

 {

 "obstacleType": "PLANE",

 "name": "example_plane",

 "points": [

 {

 "x": -0.5,

 "y": 0.2,

 "z": 0

 },

 {

 "x": -0.5,

 "y": 0,

 "z": 0

 },

 {

 "x": -0.5,

 "y": 0

 "z": 0.1

 },
]

 }

]

Response content type: text/plain

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 41 | 52

Response body:

HTTP status code Response schema/ type

200 OK Obstacle schema

412 Precondition Failed Incorrect input parameters

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK

 412 Precondition Failed

 "Unable parameter value {13}"

 500 Internal Server Error

 "Robot does not respond"

 503 Service Unavailable

 "Robot unavailable in emergency state"

3.2.13 Setting the arm into a transportation pose

Path:

PUT/pack

Description: The function sets the arm into a preset pose for transportation.

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK String

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK

 500 Internal Server Error

 "Robot does not respond"

 503 Service Unavailable

 "Robot unavailable in emergency state"

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 42 | 52

3.2.14 Quitting the untwisting mode

Path:

PUT/untwisting/finish

Description: The function enables users to verify the results of untwisting and quit the untwisting

mode. In the untwisting mode, PUT and other API requests to move the arm are unavailable, until

untwisting is completed. Users can only work with GET requests.

The arm goes into the untwisting mode after an emergency shutdown if a twist is detected on one

or more motors in its joints during initialization. Simultaneously, a twist detection alert is

generated, containing the following information:

 which axis (one or more) has a motor with a twist

 how many turns to make to untwist the axis (axes)

 in which direction to make the turns

A twist is when a motor has made more than 360° turn. Multiple twists can lead to wire

breaks and other irreparable damages.

Attention! Before applying the function, you have to untwist motor(s) manually as instructed in

the associated twist detection alert and taking into consideration the location of the arm axes.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 43 | 52

Request body: The function has no request body.

Response body: The function either notifies about successful completion of manual untwisting

or returns a twist detection alert.

HTTP status code Description Response schema/ type

200 OK Success String

500 Internal Server Error Arm error String

503 Service Unavailable Arm emergency String

Response content type: text/plain

Response examples:

 200 OK

 500 Internal Server Error

 "Robot does not respond"

 503 Service Unavailable

 "Robot unavailable in emergency state"

3.2.15 Setting tool properties

Path:

POST/tool/info

Description: The function enables setting tool properties for collision detection purposes, in

particular:

 name — any random name of the work tool defined by the user (e.g., “gripper”).

 actual TCP position described as a set of the following properties:

 point—x, y, and z coordinates defining the offset (in meters) along the x, y, and z axes

accordingly from the original TCP (see Glossary) after adding / changing the work tool.

 rotation angles—roll, pitch, and yaw. Roll stands for the actual TCP rotation angle

around the x axis; pitch—the actual TCP rotation angle around the y axis; yaw—the

actual TCP rotation angle around the z axis. All rotation angles are in radians and

relative to the physical center point of the arm base.

Related REST API functions: GET/tool/info, GET/tool/shape, POST/tool/shape

Request content type: JSON, text/plain

Request body: The request body is in accordance with the Tool info schema.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 44 | 52

Request example:

{

 "name": " gripper",

 "tcp": {

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

 }

 },

Response content type: application/json, text/plain

Response body:

HTTP status code Description Response schema/ type

200 OK Tool info schema Tool info schema

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Arm error String

Response examples:

 200 OK

{

 "name": " gripper",

 "tcp": {

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

 }

 },

 400 Bad Request
 "Incorrect format of input Message"

 412 Precondition Failed
 "Unreachable Pose",

 "Collision detected"

 500 Internal Server Error
 "Robot does not respond"

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 45 | 52

3.2.16 Setting the tool shape

Path:

POST/tool/shape

Description: The function enables setting tool shape for collision detection purposes by defining

the following properties:

 radius — radius of the work tool (in meters) measured from its physical center point.

 begin — the start x, y, and z coordinates of the work tool capsule measured as a distance

(in meters) from the original TCP.

 finish — the end x, y, and z coordinates of the work tool capsule measured as a distance

(in meters) from the original TCP.

Related REST API functions: GET/tool/info, GET/tool/shape, POST/tool/info

Request content type: JSON, text/plain

Request body: The request body is in accordance with the Tool shape schema.

Request example:
{

 "shape": [

 {

 "radius": 0.5,

 "begin": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "finish": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 }

 }

]

}

Response content type: application/json, text/plain

Response body:

HTTP status code Description Response schema/ type

200 OK Tool shape schema Tool shape schema

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Arm error String

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 46 | 52

Response examples:

 200 OK
{

 "shape": [

 {

 "radius": 0.5,

 "begin": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "finish": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 }

 }

]

}

 400 Bad Request
 "Incorrect format of input Message"

 412 Precondition Failed
 "Unreachable Pose",

 "Collision detected"

 500 Internal Server Error
 "Robot does not respond"

3.2.17 Setting a new zero point position

Path:

POST/base

Description: The function enables setting a new zero point position of the robotic arm as required

for the current user environment (e.g., considering the surrounding obstacles). The new zero point

position is described as a set of x, y, and z coordinates, as well as roll, pitch, and yaw rotation

angles. The coordinates define the desired offset (in meters) from the physical center point of the

arm base (original zero point) along the x, y, and z axes accordingly. Roll stands for the rotation

angle around the x axis; pitch—the rotation angle around the y axis; yaw—the rotation angle

around the z axis. All rotation angles are in radians and relative to the physical center point of the

arm base.

Related REST API functions: GET/base

Request content type: application/json

Request body: The request body is in accordance with the Position schema. It specifies the

coordinates and rotation angles of the new zero point.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 47 | 52

Request example:
{

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

}

Response content type: application/json, text/plain

Response body:

HTTP status code Description Response schema/ type

200 OK Success String

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Arm error String

Response examples:

 200 OK

 400 Bad Request
 "Incorrect format of input Message"

 412 Precondition Failed
 "Unreachable Position",

 "Collision detected"

 500 Internal Server Error
 "Robot does not respond"

3.3 Requests to delete parameters of the arm (DELETE)

3.3.1 Removing all obstacles from the arm environment

Path:

DELETE/environment

Description: The function removes preset obstacles from the environment of a robotic arm. An

obstacle is any object, such as a control box or a wall, in the way of an arm to be taken into

consideration for collision detection.

After a power-off, any obstacle settings for a specific environment are reset to defaults

(cleared from the device memory).

Related REST API functions: GET/environment, GET/environment/{obstacle},

PUT/environment, DELETE/environment/{obstacle}

Request body: The function has no request body.

Response content type: text/plain

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 48 | 52

Response body:

HTTP status code Response schema/ type

200 OK Success

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK

 500 Internal Server Error
 "Robot does not respond"

 503 Service Unavailable
 "Robot unavailable in emergency state"

3.3.2 Removing a specific obstacle from the arm environment

Path:

DELETE/environment/{obstacle}

Description: The function enables removing a single preset obstacle as specified in the {obstacle}

parameter from the environment of a robotic arm.

ATTENTION! SPECIFYING THE {obstacle} PARAMETER IS MANDATORY!

An obstacle is any object, such as a control box or a wall, in the way of an arm to be taken into

consideration for collision detection.

Related REST API functions: DELETE/environment, GET/environment,

GET/environment/{obstacle}, PUT/environment

Request body: The function has no request body.

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK Success

500 Internal Server Error String

503 Service Unavailable String

Response examples:

 200 OK

 500 Internal Server Error

 "Robot does not respond"

 503 Service Unavailable

 "Robot unavailable in emergency state"

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 49 | 52

ANNEX 1. RESPONSE/ REQUEST SCHEMAS

The Annex contains schemas for structuring the API requests and responses described in the above

sections.

Position schema

Schema (property) Property content Examples

Point

x: double number (meters)

y: double number (meters)

z: double number (meters)

{

"x": 0.3,

"y": -0.4,

"z": 0.2

}

Rotation

roll: double number (radians)

pitch: double number (radians)

yaw: double number (radians)

{

"roll": "3.14",

"pitch": "0",

"yaw": "0.5"

}

Pose schema

Property Property content Example

Angles Double numbers (degrees)

{

"angles": [

"61",

"-98",

"-122",

"-49",

"89",

"-28"

]

}

Motor status array schema

Property Property content Example

Angle Double number (degrees)

{

"angle": "168.89699",

"rotorVelocity": "-0.00064343837",

"rmsCurrent": "0.01",

"voltage": "47.795017",

"phaseCurrent": "0.01",

"statorTemperature": "27.990631",

"servoTemperature": "31.739925",

"velocityError": "-0.022674553",

"velocitySetpoint": "-0.02331799",

"velocityOutput": "0.01",

"velocityFeedback": "-0.00064343837",

"positionError": "0.0385437",

"positionSetpoint": "168.93799",

"positionOutput": "0.01",

"positionFeedback": "168.89944",

}

Rotor velocity Double number (RPM)

RMS current Double number (Amperes)

Voltage Double number (Volts)

Phase current Double number (Amperes)

Stator temperature Double number (degrees C)

Servo temperature Double number (degrees C)

Velocity error Double number (RPM)

Velocity setpoint Double number (RPM)

Velocity output Double number (Amperes)

Velocity feedback Double number (RPM)

Position error Double number (degrees)

Position setpoint Double number (degrees)

Position output Double number (RPM)

Position feedback Double number (degrees)

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 50 | 52

Tool info schema

Schema (property) Property content Examples

Name String

{

"name": "gripper",

}

TCP TCP

Point

x: double number (meters)

y: double number (meters)

z: double number (meters)

{

"x": "0.3",

"y": "-0.4",

"z": "0.2"

}

Rotation

roll: double number (radians)

pitch: double number (radians)

yaw: double number (radians)

{

"roll": "3.14",

"pitch": "0",

"yaw": "0.5"

}

Tool shape schema

Schema Property content Examples

Shape

radius: double number (meters)

begin:

x: double number (meters)

y: double number (meters)

z: double number (meters)

finish:

x: double number (meters)

y: double number (meters)

z: double number (meters)

{

“shape”: [

{

"radius": 0.5,

"begin": {

"x": 0.3,

"y": -0.4,

"z": 0.2

 },

"finish": {

"x": 0.3,

"y": -0.4,

"z": 0.2

 }

}

The figure below is an illustration of a defined tool shape.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 51 | 52

Obstacle schema

Schema (property) Property content Examples

Obstacle type

Name

String enum: [BOX, CAPSULE, PLANE]

String

{

"obstacleType": "BOX",

"name": "workspace"

}

BOX

Obstacle type

Name

Sides

Point

Center position

Point

Rotation

obstacleType: string

name: string

x: double number (meters)

y: double number (meters)

z: double number (meters)

x: double number (meters)

y: double number (meters)

z: double number (meters)

roll: double number (radians)

pitch: double number (radians)

yaw: double number (radians)

{

"obstacleType": "BOX",

"name": "first_box",

"sides": {

 "x": 0.3,

"y": -0.4,

"z": 0.2

 },

"centerPosition": {

"point": {

"x": 0.3,

"y": -0.4,

"z": 0.2

 },

"rotation": {

"roll": 3.14,

"pitch": 0,

"yaw": 0.5

 }

 }

 }

CAPSULE

Obstacle type

Name

Radius

Point

Point

obstacleType: string

name: string

radius: double number (meters)

startPoint:

x: double number (meters)

y: double number (meters)

z: double number (meters)

endPoint:

x: double number (meters)

y: double number (meters)

z: double number (meters)

{

"obstacleType": " CAPSULE",

"name": "first_capsule",

"radius": 0.5,

"startPoint": {

"x": 0.3,

"y": -0.4,

"z": 0.2

 },

"endPoint": {

"x": 0.3,

"y": -0.4,

"z": 0.2

 }

}

PLANE

Obstacle type

Name

Point

obstacleType: string

name: string

points:

x: double number (meters)

y: double number (meters)

z: double number (meters)

{

"obstacleType": "PLANE",

"name": "first_plane",

"points": [

 {

"x": 0.3,

"y": -0.4,

"z": 0.2

 }

]

 }

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.6, valid from Q2 2019 Page 52 | 52

Version schema

Schema Property content Examples

Version

{ "motorsVersion": [

"string"

],

"safetyVersion": "string",

"usbCanVersion": "string",

"wristVersion": "string"

}

{ "motorsVersion": [

"string"

],

"safetyVersion": "string",

"usbCanVersion": "string",

"wristVersion": "string"

}

