

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 2 | 68

TABLE OF CONTENTS

WARNING SIGNS AND THEIR MEANINGS .. 5

1 GENERAL DATA ... 6

Glossary ... 7

2 ENABLING ACCESS TO API ... 9

3 DESCRIPTION OF API METHODS .. 10

3.1 Requests to get parameters and states of the arm (GET) 10

3.1.1 Getting the actual arm position .. 10

3.1.2 Getting the actual arm pose ... 11

3.1.3 Getting the actual motion status (deprecated) .. 11

3.1.4 Getting the actual state of the robotic arm ... 13

3.1.5 Getting the actual status of servo motors ... 14

3.1.6 Getting actual tool properties ... 16

3.1.7 Getting the actual tool shape .. 17

3.1.8 Getting the actual position of the arm base ... 18

3.1.9 Getting the arm ID .. 19

3.1.10 Getting the signal level on a digital output .. 19

3.1.11 Getting the signal level on a digital input .. 20

3.1.12 Getting data about obstacles in an arm environment 21

3.1.13 Getting data about a specific obstacle in the arm environment 24

3.1.14 Getting the hardware versions of the arm components 26

3.1.15 Getting the software versions of the arm components 27

3.1.16 Getting the arm software version ... 28

3.1.17 Getting information about the arm ... 28

3.2 Requests to set parameters, states, and actions (PUT, POST) 29

3.2.1 Setting a new arm position ... 29

3.2.2 Setting a new arm pose .. 32

3.2.3 Asking the arm to move to a position .. 34

3.2.4 Asking the arm to move to a pose ... 38

3.2.5 Asking the arm to open the gripper ... 41

3.2.6 Asking the arm to close the gripper ... 41

3.2.7 Asking the arm to relax .. 42

3.2.8 Asking the arm to go to the freeze state ... 43

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 3 | 68

3.2.9 Controlling the arm in the jogging mode ... 44

3.2.10 Setting high signal level on a digital output .. 46

3.2.11 Setting low signal level on a digital output .. 46

3.2.12 Recovering the arm after an emergency .. 49

3.2.13 Adding an obstacle to the arm’s environment .. 50

3.2.14 Setting the arm into a transportation pose ... 53

3.2.15 Quitting the untwisting mode .. 54

3.2.16 Setting tool properties .. 55

3.2.17 Setting the tool shape .. 57

3.2.18 Setting a new zero point position ... 58

3.3 Requests to delete parameters of the arm (DELETE) 61

3.3.1 Removing all obstacles from the arm environment... 61

3.3.2 Removing a specific obstacle from the arm environment 61

ANNEX 1. RESPONSE/ REQUEST SCHEMAS .. 64

Position schema ... 64

Pose schema ... 64

Motor status array schema .. 64

Tool info schema .. 65

Tool shape schema ... 65

Obstacle schema .. 66

Version schema .. 67

System status schema ... 67

Jogging acceleration schema... 67

Robot info schema... 68

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 4 | 68

REVISION LIST

Revision Reason for change Change details

10
Release 1.8.0 for the
PULSE robot software

+ POST/stop
+ PUT/stop/bind/{port}/high
+ PUT/stop/bind/{port}/low
+ PUT/zg/on
+ PUT/zg/off
+ DELETE/stop

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 5 | 68

WARNING SIGNS AND THEIR MEANINGS

Below are the warning symbols used throughout the manual and explanations of their
meanings.

The sign denotes important information that is not directly related to safety, but that the
user should be aware of.

The sign indicates important safety precautions the user should follow.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 6 | 68

1 GENERAL DATA
This reference guide contains a detailed description of the PULSE REST Application
Programming Interface (API). The API implements the functionality for monitoring and controlling
the PULSE robotic arm (also, robotic arm or arm) and its work tool (also, tool).

API requests are in the JSON format. API responses are in the JSON and/or in the plain text
format. All returned values are either double numbers or text strings.

API access is based on the HTTP (v 2.0) methods listed in TABLE 1-1. The request address for

the HTTP methods is as follows: static or dynamic IP of the arm and port number 8081 (e. g.,
10.10.10.20:8081). For instructions to set the static or dynamic IP address of the arm, see the
User Manual.

Table 1-1: Supported HTTP methods

Method Purpose

GET

 to get the actual pose / position of the robotic arm (rotation angles and
coordinates of its joints)

 to get the actual status of the arm motion (e.g., idle) (deprecated)
 to get the actual state of the robotic arm (e.g., initializing)
 to get the actual state of the servo motors in the arm joints (e.g., voltage, rotor

velocity)
 to get the actual properties (e.g., rotation angles, position coordinates) and

shape of the work tool
 to get the actual position of the arm base (rotation angles and coordinates)
 to get the unique identifier (ID) of the robotic arm
 to get the signal level (HIGH or LOW) on a digital output
 to get the signal level (HIGH or LOW) on a digital input
 to get data about a single or all obstacles within the arm environment
 to get data about the hardware versions of the arm components
 to get data about the software versions of the arm components
 to get data about the arm software version
 to get data about the arm (model, model version, and serial number)

PUT

 to set/change the pose/position of the robotic arm (rotation angles and
coordinates of its joints)

 to set/change the arm state (e.g., relax or freeze)
 to set the arm in the jogging mode
 to open the gripper
 to close the gripper
 to set the signal level on a digital output to HIGH or LOW
 to recover the arm after an error
 to add an obstacle to the robot environment for collision detection
 to finish untwisting and quit the untwisting mode
 to set the arm into the transportation pose

POST
 to set properties (e.g., rotation angles, coordinates) and shape of the work tool
 to set a new position (rotation angles and coordinates) of the arm base

DELETE to remove a single or all obstacles from the arm environment

https://rozum.com/documentation/robotic-arm/pulse-90/pulse-arm-user-manual/

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 7 | 68

Glossary

TABLE 1-2 lists and defines essential terms used throughout the reference guide.

Table 1-2: Essential REST API terms

Term Definition

Axis

An axis is a moveable structural component of the PULSE robotic arm
comprising a servomotor to enable its rotation. In all, the PULSE robotic
arm includes six links located on the robotic arm as illustrated below:

Zero point

It is the origin point for measuring distances along the x, y, and z
coordinate axes. Its original physical location is at the center of the arm
base as shown below.

It is possible to change the zero point location using the
POST/Base request (see Section 3.2.21).

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 8 | 68

Tool center point
(TCP)

It is the point, relative to which all arm poses, positions, and movements
are defined. Its original physical location is at the center of the arm wrist
as shown below.

Using the POST/tool/info request (see Section 3.2.19), you
can relocate the TCP to any position within the tool or
beyond it.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 9 | 68

2 ENABLING ACCESS TO API
You have to enable API access at least once — at the first start.

Before enabling API control, make sure the PULSE arm is:

 connected to the control box, the work tool, the emergency button

 connected to a local network or a PC

 connected to a power supply

 switched on and ready for operation

For connection and switching instructions, refer to the User Manual.

To enable API control of the PULSE arm, follow the instructions below:

1. Check that the arm is ready for operation. The green LED on the control box should be on
and the red one — off, whereas the LED on the arm wrist should be steady green.

2. Start the PULSE DESK user interface as described in the User Manual.

Note that the port number you are going to use for API requests is always 8081!

3. In the displayed starting screen of the PULSE DESK interface, click the Main Menu button.

4. In the displayed menu, select Configure. PULSE DESK displays the Configure screen.

https://rozum.com/documentation/robotic-arm/pulse-90/pulse-arm-user-manual/
https://rozum.com/documentation/robotic-arm/pulse-90/pulse-arm-user-manual/

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 10 | 68

5. In the Configure screen, switch the Enable remote API access toggle to the enabled state.

Disabled state Enabled state

6. Click Apply to confirm.

Now, you can proceed to work with API functions.

3 DESCRIPTION OF API FUNCTIONS
The section describes in detail the PULSE REST API methods you can use to control the PULSE
robotic arm and its work tool (a gripper), as well as to get information about the arm, its
components, and parameters.

3.1 Requests to get parameters and states of the arm (GET)

3.1.1 Getting the actual arm position

Path:

GET/position

Description: The function returns the actual position of the PULSE robotic arm, which is
described as a set of x, y, and z coordinates, as well as roll, pitch, and yaw rotation angles.

The coordinates define the actual distance (in meters) from the zero point of the robotic arm to
the tool center point (TCP) along the x, y, and z axes accordingly. Roll stands for the TCP rotation
angle around the x axis; pitch—the TCP rotation angle around the y axis; yaw—the TCP rotation
angle around the z axis. All rotation angles are in radians and relative to the zero point.

Related REST API functions: PUT/POSITION, PUT/POSITIONS/RUN

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK POSITION SCHEMA

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK
{

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

}

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 11 | 68

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.1.2 Getting the actual arm pose

Path:

GET/pose

Description: The function returns the actual pose of the robotic arm. An arm pose is a set of
output flange angles (in degrees) of the six servos in the arm joints.

Response content type: application/json, text/plain

Related REST API functions: PUT/POSE, PUT/POSES/RUN

Response body:

HTTP status code Response schema/ type

200 OK POSE SCHEMA

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK
{

 "angles": [

 61,

 -98,

 -122,

 -49,

 89,

 -28

]

}

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.1.3 Getting the actual motion status (deprecated)

The function is deprecated starting from PULSE API release 1.5.0. Please, use the

GET/STATUS function instead.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 12 | 68

Path:

GET/status/motion

Description: The function returns the actual state of the arm motion. Possible arm states are as
follows:

 IDLE
The arm is not in motion, but is fully functional and ready for operation.

 ZERO_GRAVITY
The arm is in the zero gravity mode, which means the user can move it by hand to set a
motion trajectory.

 RUNNING
The arm is in motion.

 MOTION_FAILED
Motion is impossible due to incorrect motion settings.

 ERROR
The arm stops moving due to an error and goes into the freeze mode, retaining its last

position. The user can recover the arm, using the PUT/RECOVER function.

 EMERGENCY
Motion is impossible due to an emergency. In this case, an emergency is a fatal failure that
causes the control box to switch off and the arm to stop without retaining its position.

Recovery with the PUT/RECOVER function is not possible.

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK
Enum. motion status [IDLE, ZERO_GRAVITY, RUNNING,
MOTION_FAILED, EMERGENCY, ERROR]

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK
[

 "IDLE",

 "ZERO_GRAVITY",

 "RUNNING",

 "MOTION_FAILED",

 "EMERGENCY",

 "ERROR"

]

 500 Internal Server Error
[

 "Robot does not respond"

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 13 | 68

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.1.4 Getting the actual state of the robotic arm

Path:

GET/status

Description: The function returns the actual state of the robotic arm. Possible arm states are as
follows:

 INITIALIZING
The arm starts initializing following successful initialization of its control box. The indicator on
the arm wrist remains off until the initialization is successfully completed.

 INITIALIZATION_FAILURE
The arm has failed to complete initialization and is not available for further operation. The
arm wrist indicator is off.

 TWISTED
A twist is detected on one or more motors in the arm joints, and the arm switches to the
untwisting mode. In the mode, the PUT and other API requests to move the arm, as well as
the PULSE DESK user interface are unavailable until the twist(s) is (are) eliminated. For

details, refer to the description of the PUT/UNTWISTING/FINISH function and the User

Manual.

 ACTIVE
The arm has initialized successfully. It is ready for operation, but not in motion.

 MOTION
The arm is in motion.

 ZERO_GRAVITY
The arm is in the zero gravity mode. In the mode, the wrist buttons are enabled, and users
can move the arm joints manually to set a motion trajectory. For details, refer to the User
Manual.

 JOGGING
The arm is in the jogging mode: it is moving along or rotating around each of the preset
coordinate axes (x, y, z) at a pre-defined acceleration rate. For details, refer to the

description of the PUT/JOGGING function.

 BROKEN
Motion is impossible due to a system failure, such as a fatal error or a broken arm

component. The arm stops without retaining its position. Recovery with the PUT/RECOVER

function is not possible.

 EMERGENCY
The arm stops moving due to a non-fatal error and goes into the freeze mode, retaining its

last position. The user can recover the arm, using the PUT/RECOVER function.

In addition to the arm state, the function can also return a message to give more details about the

state (e. g., a detailed failure description). The details (if any) are contained in the message string.

https://rozum.com/documentation/robotic-arm/pulse-90/pulse-arm-user-manual/
https://rozum.com/documentation/robotic-arm/pulse-90/pulse-arm-user-manual/
https://rozum.com/documentation/robotic-arm/pulse-90/pulse-arm-user-manual/
https://rozum.com/documentation/robotic-arm/pulse-90/pulse-arm-user-manual/

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 14 | 68

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK SYSTEM STATUS SCHEMA

500 Internal Server Error Robot error string

Response examples:

 200 OK
{

 "state": [

 "INITIALIZING",

 "INITIALIZATION_FAILURE",

 "TWISTED",

 "ACTIVE",

 "MOTION",

 "ZERO_GRAVITY",

 "JOGGING",

 "BROKEN",

 "EMERGENCY"

],

 "message": "string"

 500 Internal Server Error
[

 "Robot does not respond"

]

3.1.5 Getting the actual status of servo motors

Path:

GET/status/motors

Description: The function returns the actual states of the six servo motors integrated into the
joints of the robotic arm. The states are described as an array of six objects—one for each servo
motor. Each object includes the following properties:

 Angle—the actual angular position (degrees) of the servo's output flange

 Rotor velocity—the actual rotor velocity (RPM)

 RMS current—the actual input current (Amperes)

 Phase current—the actual magnitude of alternating current (Amperes)

 Supply voltage—the actual supply voltage (Volts)

 Stator temperature—the actual temperature (degrees C) as measured on the stator winding

 Servo temperature—the actual temperature (degrees C) as measured on the MCU PCB

 Velocity setpoint—the user-preset rotor velocity (RPM)

 Velocity output—the motor control current (Amperes) based on the preset velocity

 Velocity feedback—the actual rotor velocity (RPM)

 Velocity error—the difference between the preset and the actual rotor velocities (RPM)

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 15 | 68

 Position setpoint—the user-preset position of the servo flange (degrees)

 Position output—rotor velocity (RPM) based on the position setpoint

 Position feedback—the actual position of the servo flange (degrees) based on the encoder
feedback

 Position error—the difference between the preset and the actual positions of the servo
flange (degrees)

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK MOTOR STATUS ARRAY SCHEMA

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK
[

 {

 "angle": 168.89699,

 "rotorVelocity": -0.00064343837,

 "rmsCurrent": 0.01,

 "voltage": 47.795017,

 "phaseCurrent": 0.01,

 "statorTemperature": 27.990631,

 "servoTemperature": 31.739925,

 "velocityError": -0.022674553,

 "velocitySetpoint": -0.02331799,

 "velocityOutput": 0.01,

 "velocityFeedback": -0.00064343837,

 "positionError": 0.0385437,

 "positionSetpoint": 168.93799,

 "positionOutput": 0.01,

 "positionFeedback": 168.89944

 }

]

The example is one object containing properties for a single servo. In reality, the array
in the response includes six similar objects.

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 16 | 68

3.1.6 Getting actual tool properties

Path:

GET/tool/info

Description: The function returns actual properties of the last tool preset by the user, in particular:

 name — any random name of the work tool defined by the user (e.g., “gripper”).

 actual TCP position, including:

 point — x, y, and z coordinates defining the TCP offset (in meters) along the x, y, and
z axes accordingly from its original location.

 rotation angles — roll, pitch, and yaw. Roll stands for the actual TCP rotation angle
around the x axis; pitch—the actual TCP rotation angle around the y axis; yaw—the
actual TCP rotation angle around the z axis. All rotation angles are in radians and
relative to the physical center point of the arm base.

Related REST API functions: GET/TOOL/SHAPE, POST/TOOL/INFO, POST/TOOL/SHAPE

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK TOOL INFO SCHEMA

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK
{

 "name": "gripper",

 "tcp": {

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

 }

}

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 17 | 68

3.1.7 Getting the actual tool shape

Path:

GET/tool/shape

Description: The function returns the actual properties defined by the user for a specific tool to
describe the tool shape, in particular:

 radius — radius of the work tool (in meters) measured from its physical center point.

 begin — the start x, y, and z coordinates of the work tool capsule measured as a distance
(in meters) along the corresponding axes from the original TCP.

 finish — the end x, y, and z coordinates of the work tool capsule measured as a distance
(in meters) along the corresponding axes from the original TCP.

Related REST API functions: GET/TOOL/INFO, POST/TOOL/INFO, POST/TOOL/SHAPE

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK TOOL SHAPE SCHEMA, TOOL INFO SCHEMA

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK
{

 "shape": [

 {

 "radius": 0.03,

 "begin": {

 "x": 0,

 "y": 0,

 "z": 0

 },

 "finish": {

 "x": 0,

 "y": 0,

 "z": 0.24

 }

 }

]

}

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 18 | 68

3.1.8 Getting the actual position of the arm base

Path:

GET/base

Description: The function returns the actual position of the arm's zero point in the user
environment. The actual zero point position is described as a set of x, y, and z coordinates, as
well as roll, pitch, and yaw rotation angles.

The coordinates define the offset (in meters) from the physical center point of the arm base
(original zero point) to the actual zero point position along the x, y, and z axes accordingly. Roll
stands for the rotation angle around the x axis; pitch—the rotation angle around the y axis; yaw—
the rotation angle around the z axis. All rotation angles are in radians and relative to the physical
center point of the arm base.

Related REST API functions: POST/BASE

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK POSITION SCHEMA

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK
{

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 19 | 68

3.1.9 Getting the arm ID

Path:

GET/robot/id

Description: The function returns the unique identifier (ID) of the robotic arm. The ID is an
alphanumeric designation that consists of individual servo motor identifications.

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK String

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

"1346466AFG872"

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.1.10 Getting the signal level on a digital output

Path:

GET/signal/output/{port}

Description: The function returns the actual signal level on the digital output specified in

the {port} parameter of the request path.

ATTENTION! SPECIFYING THE {port} PARAMETER IS MANDATORY!

A digital output is a physical port on the back panel of the control box. Since the control box has
two digital outputs, the parameter value can be either 1 (corresponds to Relay output 1) or
2 (corresponds to Relay output 2).

The function returns either of the following values:

 LOW—default user-defined state (e.g., LED off)

 HIGH—change of the user defined state (e.g., LED on)

For location of digital outputs, refer to the User Manual.

Related REST API functions: PUT/SIGNAL/OUTPUT/{PORT}/HIGH,

PUT /SIGNAL/OUTPUT/{PORT}/LOW

Response content type: text/plain

https://rozum.com/documentation/robotic-arm/pulse-90/pulse-arm-user-manual/

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 20 | 68

Response body:

HTTP status code Response schema/ type

200 OK Signal enum. string

412 Precondition Failed Parameter input error string

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK
[

 "HIGH",

 "LOW"

]

 412 Precondition Failed
[

 "Unable to use parameter value {13}"

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.1.11 Getting the signal level on a digital input

Path:

GET/signal/input/{port}

Description: The function returns the actual signal level on the digital input specified in the

{port} parameter of the request path.

ATTENTION! SPECIFYING THE {port} PARAMETER IS MANDATORY!

A digital input is a physical port on the back panel of the control box. Since the control box has
four digital inputs (DI), the parameter can have any integral value between 1 (corresponds to DI1)
and 4 (corresponds to DI4).

The function returns either of the following values:

 LOW—default user-defined state

 HIGH—change of the user defined state

For location of digital outputs, refer to the User Manual.

Response content type: text/plain

https://rozum.com/documentation/robotic-arm/pulse-90/pulse-arm-user-manual/

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 21 | 68

Response body:

HTTP status code Response schema/ type

200 OK Signal enum. string

412 Precondition failed Parameter input error string

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK
[

 "HIGH",

 "LOW"

]

 412 Precondition Failed
[

 "Unable to use parameter value {13}"

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.1.12 Getting data about obstacles in an arm environment

Path:

GET/environment

Description: The function returns data about all obstacles preset within the arm’s environment.

An obstacle is any object, such as a control box or a wall, in the way of an arm to be taken into
consideration for collision detection. An obstacle can be one of the following types:

 BOX—typically used to describe obstacles with a shape reminding that of a box.

 CAPSULE—preferred for objects of cylindrical shape or having complex structure and
irregular outlines. To describe an obstacle of complex structure, it is possible to use
multiple capsules.

 PLANE—recommended for describing plain-surface objects, such as a wall or a table.

Depending on the total quantity of obstacles preset in a given environment, the response of the
function can contain one or more data arrays. Each array comprises the following data:

 Obstacle type—a geometric pattern, roughly describing the shape of an obstacle for
collision detection purposes—BOX, CAPSULE, and PLANE.

 Name—any random name as defined by the user for a specific obstacle type (e.g.,

“first_box”).

 Obstacle properties—spatial location and/or dimensions of a specific obstacle.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 22 | 68

Each obstacle type has its own set of properties as described in the table below.

Type Properties

BOX

- sides—the x, y, and z coordinates defining the dimensions of an obstacle
(i.e., length, width, depth).

- position—a set of the x, y, and z coordinates, as well as roll, pitch and
yaw angles defining the location of an obstacle in space.

The coordinate values are distances (in meters) along the x, y, and z axes
accordingly, measured from the obstacle’s center point relative to the zero

point (see GLOSSARY).

Roll, pitch and yaw are rotation angles (in radians) of the obstacle’s center
point relative to the zero point.

CAPSULE

- radius—the radius (in meters) of the capsule shape incorporating an
obstacle, measured from the obstacle’s center point

- start point—the starting x, y, and z coordinates (in meters) of the capsule
shape length relative to the zero point

- end point—the end x, y, and z coordinates (in meters) of the capsule
shape length relative to the zero point

PLANE
- points—at least three points constituting a single plane; each of the points

is described as a set of x, y, and z coordinates (in meters) on the plane

Related REST API functions: GET/ENVIRONMENT/{OBSTACLE}, PUT/ENVIRONMENT,

DELETE/ENVIRONMENT, DELETE/ENVIRONMENT/{OBSTACLE}

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK OBSTACLE SCHEMA

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK
[

 {

 "obstacleType": "BOX",

 "name": "example_box",

 "sides": {

 "x": 0.1,

 "y": 0.1,

 "z": 0.1

 },

 "position": {

 "point": {

 "x": 1,

 "y": 1,

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 23 | 68

 "z": 1

 },

 "rotation": {

 "roll": 0,

 "pitch": 0,

 "yaw": 0

 }

 }

 },

 {

 "obstacleType": "CAPSULE",

 "name": "example_capsule",

 "radius": 0.1,

 "startPoint": {

 "x": 0.5,

 "y": 0.5,

 "z": 0.2

 },

 "endPoint": {

 "x": 0.5,

 "y": 0.5,

 "z": 0.2

 }

 },

 {

 "obstacleType": "PLANE",

 "name": "example_plane",

 "points": [

 {

 "x": -0.5,

 "y": 0.2,

 "z": 0

 },

 {

 "x": -0.5,

 "y": 0,

 "z": 0

 },

 {

 "x": -0.5,

 "y": 0,

 "z": 0.1

 }

]

 }

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 24 | 68

3.1.13 Getting data about a specific obstacle in the arm environment

Path:

GET/environment/{obstacle}

Description: The function returns data about the obstacle specified in the {obstacle}

parameter of the request path.

ATTENTION! SPECIFYING THE {obstacle} PARAMETER IS MANDATORY!

An obstacle is any object, such as a control box or a wall, in the way of an arm to be taken into
consideration for collision detection.

An obstacle can be one of the following types:

 BOX— typically used to describe obstacles with a shape reminding that of a box.

 CAPSULE—preferred for objects of cylindrical shape or having complex structure and
irregular outlines. In the latter two cases, it is also possible to describe an obstacle using
multiple capsules.

 PLANE—recommended for describing plain-surface objects, such as a wall or a table.

For this REST API request, the {obstacle} parameter in the request path can

contain no more than a single object (e.g., box 1).

The response of the function contains a single data array comprising the following:

 Obstacle type—a geometric pattern, roughly describing the shape of an obstacle for
collision detection purposes— BOX, CAPSULE, and PLANE.

 Name—any random name as defined by the user for a specific obstacle type (e.g.,

“first_box”).

 Obstacle properties—spatial location and / or dimensions of a specific obstacle

Each obstacle type has its own set of properties as described in the table below.

Obstacle
type

Obstacle properties

BOX

- sides—the x, y, and z coordinates defining the spatial dimensions of
an obstacle (i.e., length, width, depth).

- position—a set of the x, y, and z coordinates, as well as roll, pitch
and yaw angles defining the location of an obstacle in space.

The coordinate values are distances (in meters) along the x, y, and z
axes accordingly, measured from the obstacle’s center point relative

to the zero point (see GLOSSARY).

Roll, pitch and yaw are rotation angles (in radians) of the obstacle’s
center point relative to the zero point.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 25 | 68

CAPSULE

- radius—the radius (in meters) of the capsule shape incorporating an
obstacle, measured from the obstacle’s center point

- start point—the starting x, y, and z coordinates (in meters) of the
capsule shape length relative to the zero point

- end point—the end x, y, and z coordinates (in meters) of the capsule
shape length relative to the zero point

PLANE
- points—at least three points constituting a single plane; each of the

points is described as a set of x, y, and z coordinates (in meters) on
the plane

Related REST API functions: GET/ENVIRONMENT, PUT/ENVIRONMENT,

DELETE/ENVIRONMENT, DELETE/ENVIRONMENT/{OBSTACLE}

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK OBSTACLE SCHEMA

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:
 200 OK

[

 {

 "obstacleType": "BOX",

 "name": "example_box",

 "sides": {

 "x": 0.1,

 "y": 0.1,

 "z": 0.1

 },

 "position": {

 "point": {

 "x": 1,

 "y": 1,

 "z": 1

 },

 "rotation": {

 "roll": 0,

 "pitch": 0,

 "yaw": 0

 }

 }

 },

 {

 "obstacleType": "CAPSULE",

 "name": "example_capsule",

 "radius": 0.1,

 "startPoint": {

 "x": 0.5,

 "y": 0.5,

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 26 | 68

 "z": 0.2

 },

 "endPoint": {

 "x": 0.5,

 "y": 0.5,

 "z": 0.2

 }

 },

 {

 "obstacleType": "PLANE",

 "name": "example_plane",

 "points": [

 {

 "x": -0.5,

 "y": 0.2,

 "z": 0

 },

 {

 "x": -0.5,

 "y": 0,

 "z": 0

 },

 {

 "x": -0.5,

 "y": 0,

 "z": 0.1

 }

]

 }

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.1.14 Getting the hardware versions of the arm components

Path:

GET/version/hardware

Description: The function returns the hardware versions for all motors in the arm joints, as well
as hardware versions for the USB-CAN dongle, the safety board, and the wrist.

Related REST API functions: GET/VERSION/SOFTWARE, GET/VERSION/SOFTWARE/ROBOT,

GET/ROBOT/INFO

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK VERSION SCHEMA

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 27 | 68

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK
{

 "motorsVersion": [

 "string"

],

 "safetyVersion": "string",

 "usbCanVersion": "string",

 "wristVersion": "string"

}

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.1.15 Getting the software versions of the arm components

Path:

GET/version/software

Description: The function returns the software versions for all motors in the arm joint, as well
as software versions for the USB-CAN dongle, the safety board, and the wrist.

Related REST API functions: GET/VERSION/HARDWARE,

GET/VERSION/SOFTWARE/ROBOT, GET/ROBOT/INFO

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK VERSION SCHEMA

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:
 200 OK

{

 "motorsVersion": [

 "string"

],

 "safetyVersion": "string",

 "usbCanVersion": "string",

 "wristVersion": "string"

}

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 28 | 68

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.1.16 Getting the arm software version

Path:

GET/version/software/robot

Description: The function returns the version of the arm’s core software.

Related REST API functions: GET/VERSION/HARDWARE, GET/VERSION/SOFTWARE,

GET/ROBOT/INFO

Response content type: application/json, text/plain

Response body:

HTTP status code Response schema/ type

200 OK String

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

"1.4.3-release"

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.1.17 Getting information about the arm

Path:

GET/robot/info

Description: The function returns the unique serial number of the arm, as well as its model and
model version data. In case any data is not available, the function returns “unknown” for the
corresponding property.

Related REST API functions: GET/VERSION/HARDWARE, GET/VERSION/SOFTWARE,

GET/ROBOT/ID, GET/VERSION/SOFTWARE/ROBOT

Response content type: application/json, text/plain

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 29 | 68

Response body:

HTTP status code Response schema/ type

200 OK ROBOT INFO SCHEMA

500 Internal Server Error Robot error string

Response examples:

 200 OK
{

 "model": "pulse75",

 "version": "2.4.0",

 "serialNumber": "18-00604"

}

 500 Internal Server Error
[

 "Robot does not respond"

]

3.2 Requests to set parameters, states, and actions (PUT, POST)

3.2.1 Setting a new arm position

Path:

PUT/position

Description: The function commands the arm to move to a new position. The position is
described as a set of x, y, and z coordinates, as well as roll, pitch, and yaw rotation angles.

The coordinates define the desired distance (in meters) from the zero point to the TCP along the
x, y, and z axes accordingly. Roll stands for the desired TCP rotation angle around the x axis;
pitch — the desired TCP rotation angle around the y axis; yaw — the desired TCP rotation angle
around the z axis. All rotation angles are in radians and relative to the zero point.

Related REST API functions: GET/POSITION, PUT/POSITIONS/RUN

Request content type: application/json

Request parameters: It is obligatory to set one of the below parameters.

For each single request, you can set ONLY ONE of the below variants: speed,
tcp_max_velocity, or velocity+acceleration.

 speed

 tcp_max_velocity

 velocity+acceleration

Important! In the combination, it is obligatory to set both velocity and acceleration.

Parameter Description

speed

The parameter sets the combination of velocity and acceleration (in %
max. velocity and acceleration) at which the arm should move to a target
position. The admissible value range is from 1 to 100.

Type: number (double)

Included as: query

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 30 | 68

velocity

The parameter sets the velocity (in % max. velocity) at which the arm
should move to the target position. The admissible value range is from
1 to 100.

ATTENTION! The velocity parameter is always used in combination
with the acceleration parameter.

Type: number (double)

Included as: query

acceleration

The parameter sets the acceleration (in % max. acceleration) at which
the arm should move to the target position. The admissible value
range is from 1 to 200.

ATTENTION! Use values greater than 100% with caution! They are
admissible only with a relatively light load or without a load.
Otherwise, the arm can fail to operate.

ATTENTION! The acceleration parameter is obligatory, always used
in combination with the velocity parameter.

Type: number (double)

Included as: query

tcp_max_velocity

The parameter defines the limit velocity in meters per second that an
end effector can reach at its TCP while moving. The admissible value
range is from 0.001 to 2 m/s.

Included as: query

motionType

The parameter sets the type of motion the arm should use to get to the
target position. Admissible values are as follows:

 JOINT
When set to this motion type, the arm moves to the specified
position along a trajectory that has been calculated as the most
convenient one. The trajectory can be described as a set of joint
angles connected into a curve.

 LINEAR
When the motion type is LINEAR, the arm moves to the specified
position along a straight line. This motion takes more time than
with the type parameter set to JOINT. However, the trajectory is
entirely predictable, unlike with the JOINT type motion.

When the user specifies no value for the parameter, it is set to the
default one—JOINT.

Included as: query

Request body: The request body is in accordance with the POSITION SCHEMA. It specifies the
coordinates (x, y, z) and rotation angles (roll, pitch, yaw) that describe the target arm position.

Make sure to specify all point (x, y, z) and rotation (roll, pitch, yaw) properties in
the request body. Otherwise, the function returns a 400 Bad Request error.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 31 | 68

Request example:

Request path: Depending on which of the above obligatory parameters the user chooses to
set, the request path is as illustrated below.

 speed
PUT/position?speed=100&motionType=joint

 velocity+acceleration
PUT/position?velocity=100&acceleration=10

 tcp_max_velocity
PUT/position?tcp_max_velocity=1

Request body:
{

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

}

Response content type: application/json, text/plain

Response body:

HTTP status code Description Response schema/ type

200 OK Actual arm position POSITION SCHEMA

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Robot error String

503 Service unavailable Robot emergency String

Response examples:

 200 OK
{

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

}

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 32 | 68

 400 Bad Request
[

 "Incorrect format of input Message"

]

 412 Precondition Failed
[

 "Unreachable Position",

 "Collision detected",

 "Invalid velocity parameter: is not in (0, 2] range",

 "Not present"

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.2 Setting a new arm pose

Path:

PUT/pose

Description: The function commands the arm to move to a new pose. A pose is as a set of output
flange angles (in degrees) of the six servos in the arm joints.

Related REST API functions: GET/POSE, PUT/POSES/RUN

Request body: The request body is in accordance with the POSE SCHEMA. It specifies the angles
that each of the six servos should reach to move the arm to the target pose.

Request type: application/json

Request parameters: It is obligatory to set one of the below parameters.

For each single request, you can set ONLY ONE of the below variants: speed,
tcp_max_velocity, or velocity+acceleration.

 speed

 tcp_max_velocity

 velocity+acceleration

Important! In the combination, it is obligatory to set both velocity and acceleration.

Parameter Description

speed

The parameter sets the combination of velocity and acceleration (in % max.
velocity and acceleration) at which the arm servos should move to the target
pose angles. The admissible value range is from 1 to 100.

Type: number (double)

Included as: query

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 33 | 68

velocity

The parameter sets the velocity (in % max. velocity) at which the arm servos
should move to the target pose angles. The admissible value range is from 1
to 100.

ATTENTION! The velocity parameter is always used in combination with
the acceleration parameter.

Type: number (double)

Included as: query

acceleration

The parameter sets the acceleration (in % max. acceleration) at which the arm
servos should move to the required pose angles. The admissible value range
is from 1 to 200.

ATTENTION! Use values greater than 100% with caution! They are
admissible only with a relatively light load or without a load. Otherwise,
the arm can fail to operate.

ATTENTION! The acceleration parameter is obligatory, always used in
combination with the velocity parameter.

Type: number (double)

Included as: query

tcp_max_velocity

The parameter defines the limit velocity in meters per second that an end
effector can reach at its TCP while moving. The admissible value range is
from 0.001 to 2 m/s.

Included as: query

motionType

The parameter sets the type of motion the arm should use to get into the
specified pose. Admissible values are as follows:

 JOINT

When set to this motion type, the arm moves to the specified pose along a
trajectory that has been calculated as the most convenient one. The
trajectory can be described as a set of joint angles connected into a curve.

 LINEAR

When the motion type is LINEAR, the arm moves to the specified pose along
a straight line. This motion takes more time than with the type parameter set
to JOINT. However, the trajectory is entirely predictable, unlike with the
JOINT type motion.

When the user specifies no value for the parameter, it is set to the default
one—JOINT.

Included as: query

Request example:

Path: Depending on which of the above obligatory parameters the user chooses to set, the
request path is as illustrated below.

 speed
PUT/pose?speed=100&motionType=joint

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 34 | 68

 velocity+acceleration

PUT/pose?velocity=100&acceleration=10

 tcp_max_velocity
PUT/pose?tcp_max_velocity=1

Request body:
{

 "angles": [

 61,

 -98,

 -122,

 -49,

 89,

 -28

]

}

Response body:

HTTP status code Description Response schema/ type

200 OK Success -

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Robot error String

503 Service unavailable Robot emergency String

Response examples:

 400 Bad Request
[

 "Incorrect format of input Message"

]

 412 Precondition Failed
[

 "Unreachable Position",

 "Collision detected",

 "Invalid velocity parameter: is not in (0, 2] range",

 "Not present"

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.3 Asking the arm to move to a position

Path:

PUT/positions/run

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 35 | 68

Description: The function allows for setting a trajectory of one or more waypoints to move the
robotic arm smoothly from one position to another. In the trajectory, each waypoint (both
intermediary and target positions) is described as a set of x, y, and z coordinates, as well as roll,
pitch, and yaw rotation angles.

The coordinates define the desired distance (in meters) from the zero point to the TCP along the
x, y, and z axes accordingly. Roll stands for the desired TCP rotation angle around the x axis;
pitch—the desired TCP rotation angle around the y axis; yaw—the desired TCP rotation angle
around the z axis. All rotation angles are in radians.

Note: Similarly, you can move the arm from one position to another through one or more
waypoints, using the PUT/POSITION request. When the arm is executing a trajectory of
PUT/POSITION waypoints, it stops for a short moment at each preset waypoint. With the
PUT/POSITIONS/RUN function, the arm moves smoothly though all waypoints without stopping,
which reduces the overall time of going from one position to another.

Related REST API functions: PUT/POSITION, PUT/POSITIONS/RUN

Request body: The request body is in accordance with the POSITION SCHEMA. It specifies the
coordinates (x, y, z) and rotation angles (roll, pitch, yaw) of all the waypoints on the trajectory from
the initial position to the target one.

Make sure to specify all point (x, y, z) and rotation (roll, pitch, yaw) properties in
the request body. Otherwise, the function returns a 400 Bad Request error.

Request type: application/json

Request parameters: It is obligatory to set one of the below parameters.

For each single request, you can set ONLY ONE of the below variants: speed,
tcp_max_velocity, or velocity+acceleration.

 speed

 tcp_max_velocity

 velocity+acceleration

Important! In the combination, it is obligatory to set both velocity and acceleration.

Parameter Description

speed

The parameter sets the combination of velocity and acceleration (in %
max. velocity and acceleration) at which the arm should move to a
waypoint position. The admissible value range is from 1 to 100.

Type: number (double)

Included as: query

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 36 | 68

velocity

The parameter sets the velocity (in % max. velocity) at which the arm
should move to a waypoint position. The admissible value range is from
1 to 100.

ATTENTION! The velocity parameter is always used in combination
with the acceleration parameter.

Type: number (double)

Included as: query

acceleration

The parameter sets the acceleration (in % max. acceleration) at which the
arm should move to a waypoint position. The admissible value range is
from 1 to 200.

ATTENTION! Use values greater than 100% with caution! They are
admissible only with a relatively light load or without a load.
Otherwise, the arm can fail to operate.

ATTENTION! The acceleration parameter is obligatory, always used in
combination with the velocity parameter.

Type: number (double)

Included as: query

tcp_max_velocity

The parameter defines the limit velocity in meters per second that an end
effector can reach at its TCP while moving. The admissible value range
is from 0.001 to 2 m/s.

Included as: query

motionType

The parameter sets the type of motion the arm should use to get to the
specified position through one or more waypoints. Admissible values are
as follows:

 JOINT
When set to this motion type, the arm moves from one waypoint to
another along a trajectory that has been calculated as the most
convenient one. The trajectory can be described as a set of joint
angles connected into a curve.

 LINEAR
When the motion type is LINEAR, the arm moves from one waypoint to
another along a straight line. This motion takes more time than with the
type parameter set to JOINT. However, the trajectory is entirely
predictable, unlike with the JOINT type motion.

When the user specifies no value for the parameter, it is set to the default
one—JOINT.

Included as: query

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 37 | 68

Request example:

Path: Depending on which of the above obligatory parameters the user chooses to set, the
request path is as illustrated below.

 speed
PUT/positions/run?speed=100&motionType=joint

 velocity+acceleration
PUT/positions/run?velocity=100&acceleration=10

 tcp_max_velocity
PUT/positions/run?tcp_max_velocity=1

Request body:

[

 {

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

 }

]

Response body:

HTTP status code Description
Response schema/

type

200 OK Success -

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Robot error String

503 Service Unavailable Robot emergency String

Response examples:

 200 OK

 400 Bad Request
[

 "Incorrect format of input Message"

]

 412 Precondition Failed
[

 "Unreachable Position",

 "Collision detected",

 "Invalid velocity parameter: is not in (0, 2] range",

 "Not present"

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 38 | 68

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.4 Asking the arm to move to a pose

Path:

PUT/poses/run

Description: The function allows for setting a trajectory of one or more waypoints to move the
robotic arm smoothly from one pose to another. In the trajectory, each waypoint is a set of output
flange angles (in degrees) of the six servos in the arm joints.

Note: Similarly, you can move the arm from one pose to another through one or more waypoints,
using the PUT/POSE function. However, when the arm is executing a trajectory of PUT/POSE

waypoints, it stops for a short moment at each preset waypoint. With the PUT/POSES/RUN
function, the arm moves smoothly though all waypoints without stopping, which reduces the
overall time of going from one pose to another.

Related REST API functions: PUT/POSE, GET/POSE

Request body: The request body is in accordance with the POSE SCHEMA. It specifies the angles
that each of the six servos should reach to move the arm to a target pose.

Request content type: application/json

Request parameters: It is obligatory to set one of the below parameters.

For each single request, you can set ONLY ONE of the below variants: speed,
tcp_max_velocity, or velocity+acceleration.

 speed

 tcp_max_velocity

 velocity+acceleration

Important! In the combination, it is obligatory to set both velocity and acceleration.

Parameter Description

speed

The parameter sets the combination of velocity and acceleration (in % max.
velocity and acceleration) at which the arm servos should move to a
waypoint. The admissible value range is from 1 to 100.

Type: number (double)

Included as: query

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 39 | 68

velocity

The parameter sets the velocity (in % max. velocity) at which the arm servos
should move to a waypoint. The admissible value range is from 1 to 100.

ATTENTION! The velocity parameter is always used in combination
with the acceleration parameter.

Type: number (double)

Included as: query

acceleration

The parameter sets the acceleration (in % max. acceleration) at which the
arm servos should move to a waypoint. The admissible value range is
from 1 to 200.

ATTENTION! Use values greater than 100% with caution! They are
admissible only with a relatively light load or without a load.
Otherwise, the arm can fail to operate.

ATTENTION! The acceleration parameter is obligatory, always used in
combination with the velocity parameter.

Type: number (double)

Included as: query

tcp_max_velocity

The parameter defines the limit velocity in meters per second that an end
effector can reach at its TCP while moving. The admissible value range is
from 0.001 to 2 m/s.

Included as: query

motionType

The parameter sets the type of motion the arm should use to get to the
specified pose through one or more waypoints. Admissible values are as
follows:

 JOINT
When set to this motion type, the arm moves from one waypoint to
another along a trajectory that has been calculated as the most
convenient one. The trajectory can be described as a set of joint angles
connected into a curve.

 LINEAR
When the motion type is LINEAR, the arm moves from one waypoint to
another along a straight line. This motion takes more time than with the
type parameter set to JOINT. However, the trajectory is entirely
predictable, unlike with the JOINT type motion.

When the user specifies no value for the parameter, it is set to the default
one—JOINT.

Included as: query

Request example:

Path: Depending on which of the above obligatory parameters the user chooses to set, the
request path is as illustrated below.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 40 | 68

 speed
PUT/poses/run?speed=100&motionType=joint

 velocity+acceleration

PUT/poses/run?velocity=100&acceleration=10

 tcp_max_velocity

PUT/poses/run?tcp_max_velocity=1

Request body: Specifies the angles describing a waypoint.

[

 {

 "angles": [

 61,

 -98,

 -122,

 -49,

 89,

 -28

]

 }

]

Response body:

HTTP status code Description Response schema/ type

200 OK Success -

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Robot error String

503 Service Unavailable Robot emergency String

Response content type: text/plain

Response examples:

 200 OK

 400 Bad Request
[

 "Incorrect format of input Message"

]

 412 Precondition Failed
[

 "Unreachable Position",

 "Collision detected",

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 41 | 68

3.2.5 Asking the arm to open the gripper

Path:

PUT/gripper/open

Description: The function commands the arm to open the gripper. It has no request body, but

the user can optionally set one parameter—timeout.

Related REST API functions: PUT/GRIPPER/CLOSE

Request parameter:

Parameter Description

timeout

The parameter specifies how long (in milliseconds) the arm should remain idle,
waiting for the gripper to open. The default manufacturer-preset value is 500 ms.

Admissible value range: integers from 1 and above

When the parameter setting is out of the admissible range, it is
replaced automatically with the default value.

Type: number (int32)

Included as: query

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK -

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.6 Asking the arm to close the gripper

Path:

PUT/gripper/close

Description: The function commands the arm to close the gripper. It has no request body, but
the user can optionally set one parameter—timeout.

Related REST API functions: PUT/GRIPPER/OPEN

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 42 | 68

Request parameter:

Parameter Description

timeout

The parameter specifies how long (in milliseconds) the arm should remain idle,
waiting for the gripper to close. The default manufacturer-preset value is 500 ms.

Admissible value range: integers from 1 and above

When the parameter setting is out of the admissible range, it is
replaced automatically with the default value.

Type: number (int32)

Included as: query

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK -

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.7 Asking the arm to relax

Path:

PUT/relax

Description: The function sets the arm in the "relaxed" state. The arm stops moving without
retaining its last position. In this state, the user can move the robotic arm by hand (e. g., to
verify/ test a motion trajectory).

Related REST API functions: PUT/FREEZE

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK -

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 43 | 68

Response examples:

 200 OK

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.8 Asking the arm to go to the freeze state

Path:

PUT/freeze

Description: The function sets the arm in the “freeze” state. The arm stops moving, retaining its
last position.

In the state, it is not advisable to move the arm by hand as this can cause
damage.

Related REST API functions: PUT/RELAX

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK -

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.9 Asking the arm to go to the protection mode

Path:

POST/stop

Description: The function sets the arm in the "Protection mode". The arm stops moving,
retaining its last position and is disabled for command execution until "recover" is called.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 44 | 68

In the state, it is not advisable to move the arm by hand as this can cause
damage.

Related REST API functions: PUT/RECOVER

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK -

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.10 Controlling the arm in the jogging mode

Path:

PUT/jogging

Description: The function sets the arm in the jogging mode, while also enabling users to
specify jogging motion parameters. In the mode, the arm moves along or rotates around one or
more preset coordinate axes (x, y, z) at a pre-defined acceleration rate.

The arm continues moving in the mode at preset parameters until the mode is disabled. There
are two way to disable the mode (see the request body examples below):

 to send a PUT/jogging request with a void “acceleration” object in the request

body; or

 to set all properties of the “acceleration” object to 0.

To have a thorough understanding how you can best implement the jogging mode in
your environment, we recommend contacting our support specialists.

Request body: The request body is in accordance with the JOGGING ACCELERATION SCHEMA.
The schema defines acceleration of the arm along the coordinate axes (x, y, z) and at roll, pitch,
and yaw rotation angles (rx, ry, rz). Note that all the coordinates and rotation angles are relative
to the base of the robot arm.

All the properties in the schema are optional — you can set and omit them at your discretion.
The admissible value range for all properties is from -1 to 1. When no value is specified for a

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 45 | 68

property, the property is set to the default 0. Accordingly, when no values are specified for any
of the properties, all of them are set to the default 0, in which case the arm stops and the
jogging mode is disabled.

Request content type: application/json

Request examples:

 To set jogging parameters

{

 "acceleration" : {

 "x" : 1

 "y" : -0.5

 "z" : 0

 "rx" : 0

 "ry" : 0.5

 "rz" : -0.1

 }

}

 To disable the jogging mode (alternative 1)

PUT /jogging '{"acceleration": {}}

 To disable the jogging mode (alternative 2)

PUT /jogging

{

 "acceleration" : {

 "x" : 0

 "y" : 0

 "z" : 0

 "rx" : 0

 "ry" : 0

 "rz" : 0

 }

}

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK -

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 46 | 68

[

 "Robot unavailable in emergency state"

]

3.2.11 Setting high signal level on a digital output

Path:

PUT/signal/output/{port}/high

Description: The function sets the digital output specified in the {port} parameter of the request

path to the HIGH signal level.

ATTENTION! SPECIFYING THE {port} PARAMETER IS MANDATORY!

A digital output is a physical port on the back panel of the control box. Since the control box has
two digital outputs, the parameter value can be either 1 (corresponds to Relay output 1) or 2
(corresponds to Relay output 2).

For location of the digital outputs, refer to the document User Manual.

Related REST API functions: GET/SIGNAL/OUTPUT/{PORT},

PUT /SIGNAL/OUTPUT/{PORT}/LOW

Response content type: text/plain, application/json

Response body:

HTTP status code Response schema/ type

200 OK -

412 Precondition Failed Incorrect input parameters

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 412 Precondition Failed
[

 "Unable to use parameter value {13}"

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.12 Setting low signal level on a digital output

https://rozum.com/documentation/robotic-arm/pulse-90/pulse-arm-user-manual/

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 47 | 68

Path:

PUT /signal/output/{port}/low

Description: The function sets the digital output specified in the {port} parameter of the

request path to the LOW signal level.

ATTENTION! SPECIFYING THE {port} PARAMETER IS MANDATORY!

A digital output is a physical port on the back panel of the control box. Since the control box has
two digital outputs, the parameter value can be either 1 (corresponds to Relay output 1) or
2 (corresponds to Relay output 2). For location of the digital outputs and their detailed description,
refer to the User Manual.

Related REST API functions: PUT/SIGNAL/OUTPUT/{PORT}/HIGH,

GET/SIGNAL/OUTPUT/{PORT}

Response content type: text/plain, application/json

Response body:

HTTP status code Response schema/ type

200 OK String

412 Precondition Failed Incorrect input parameters

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 412 Precondition Failed
[

 "Unable to use parameter value {13}"

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.13 Bind stop command to high input signal on a specific port

Path:

PUT /stop/bind/{port}/high

Description: The function binds stop command execution to "high" input signal on a specific
port.

ATTENTION! SPECIFYING THE {port} PARAMETER IS MANDATORY!

https://rozum.com/documentation/robotic-arm/pulse-90/pulse-arm-user-manual/

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 48 | 68

Related REST API functions: DELETE/STOP, POST/STOP, PUT/STOP/BIND/{PORT}/LOW

Response content type: text/plain, application/json

Response body:

HTTP status code Response schema/ type

200 OK String

412 Precondition Failed Incorrect input parameters

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 412 Precondition Failed
[

 "Unable to use parameter value {13}"

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.14 Bind stop command to low input signal on a specific port

Path:

PUT /stop/bind/{port}/low

Description: The function binds stop command execution to "low" input signal on a specific
port.

ATTENTION! SPECIFYING THE {port} PARAMETER IS MANDATORY!

Response content type: DELETE/STOP, POST/STOP, PUT /STOP/BIND/{PORT}/HIGH

Response content type: text/plain, application/json

Response body:

HTTP status code Response schema/ type

200 OK String

412 Precondition Failed Incorrect input parameters

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 49 | 68

Response examples:

 200 OK

 412 Precondition Failed
[

 "Unable to use parameter value {13}"

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.15 Recovering the arm after an emergency

Path:

PUT/recover

Description: The function recovers the arm after an emergency, setting its motion status to
IDLE. Recovery is possible only after an emergency that is not fatal (a non-fatal error

corresponds to the EMERGENCY status) (see GET/STATUS).

With the 200 OK status code, the function returns either of two values:

 SUCCESS—the recovery has been completed as appropriate

 FAILED—the recovery has failed

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK String enum: [SUCCESS, FAILED]

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK
[

 "SUCCESS",

 "FAILED"

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 50 | 68

 "Robot unavailable in emergency state"

]

3.2.16 Adding an obstacle to the arm’s environment

Path:
PUT/environment

Description: The function enables adding obstacles to the environment of a robotic arm for
collision detection purposes.

An obstacle is any object, such as a control box or a wall, in the way of an arm to be taken into
consideration for collision detection. An obstacle can be one of the following types:

 BOX—typically used to describe obstacles with a shape reminding that of a box.

 CAPSULE—preferred for objects of cylindrical shape or having complex structure and irregular
outlines. In the latter two cases, it is also possible to describe an obstacle using multiple
capsules.

 PLANE—recommended for describing plain-surface objects, such as a wall or a table.

After a power-off, any obstacle settings for a specific environment are reset to
defaults (cleared from the device memory).

Note: With a single PUT/environment request, it is possible to add only one obstacle. To

add multiple obstacles, create and send the required quantity of PUT/environment requests.

Request body: The request body is in accordance with the OBSTACLE SCHEMA and contains a
single data array comprising the following:

 Obstacle type—a geometric pattern, roughly describing the shape of an obstacle for
collision detection purposes— BOX, CAPSULE, and PLANE.

 Name—any random name as defined by the user for a specific obstacle type (e.g.,

“first_box”).

 Obstacle properties—spatial location in space and / or dimensions of a specific
obstacle.

Each obstacle type has its own set of properties as described in the table below.

Type Properties

BOX

- sides—the x, y, and z coordinates defining the spatial dimensions of an
obstacle (i.e., length, width, depth); the values should be greater than 0.0.

- position—a set of the x, y, and z coordinates, as well as roll, pitch and yaw
angles defining the location of an obstacle in space.

The coordinate values are distances (in meters) along the x, y, and z axes
accordingly, measured from the obstacle’s center point relative to the zero

point (see GLOSSARY).

Roll, pitch and yaw are rotation angles (in radians) of the obstacle’s center
point relative to the zero point.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 51 | 68

CAPSULE

- radius—the radius (in meters) of the capsule shape incorporating an
obstacle, measured from the obstacle’s center point

- start point—the starting x, y, and z coordinates (in meters) of the capsule
shape length relative to the zero point

- end point—the end x, y, and z coordinates (in meters) of the capsule shape
length relative to the zero point

PLANE - points—at least three points constituting a single plane; each of the points
is described as a set of x, y, and z coordinates (in meters) on the plane

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 52 | 68

Related REST API functions: GET/ENVIRONMENT, GET/ENVIRONMENT/{OBSTACLE},

DELETE/ENVIRONMENT, DELETE/ENVIRONMENT/{OBSTACLE}

Request example:
[

 {

 "obstacleType": "BOX",

 "name": "example_box",

 "sides": {

 "x": 0.1,

 "y": 0.1,

 "z": 0.1

 },

 "position": {

 "point": {

 "x": 1,

 "y": 1,

 "z": 1

 },

 "rotation": {

 "roll": 0,

 "pitch": 0,

 "yaw": 0

 }

 }

 },

 {

 "obstacleType": "CAPSULE",

 "name": "example_capsule",

 "radius": 0.1,

 "begin": {

 "x": 0.5,

 "y": 0.5,

 "z": 0.2

 },

 "finish": {

 "x": 0.5,

 "y": 0.5,

 "z": 0.2

 }

 },

 {

 "obstacleType": "PLANE",

 "name": "example_plane",

 "points": [

 {

 "x": -0.5,

 "y": 0.2,

 "z": 0

 },

 {

 "x": -0.5,

 "y": 0,

 "z": 0

 },

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 53 | 68

 {

 "x": -0.5,

 "y": 0,

 "z": 0.1

 }

]

 }

]

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK OBSTACLE SCHEMA

412 Precondition Failed Incorrect input parameters

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 412 Precondition Failed
[

 "Unable to use parameter value {13}"

]

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.17 Setting the arm into a transportation pose

Path:

PUT/pack

Description: The function sets the arm into a preset pose for transportation.

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK -

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 54 | 68

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.18 Quitting the untwisting mode

Path:

PUT/untwisting/finish

Description: The function enables users to verify the results of untwisting and quit the untwisting

mode. In the untwisting mode, PUT and other API requests to move the arm are unavailable, until

untwisting is completed. Users can only work with GET requests.

The arm goes into the untwisting mode after an emergency shutdown if a twist is detected on one
or more motors in its joints during initialization. Simultaneously, a twist detection alert is
generated, containing the following information:

 which axis (one or more) has a motor with a twist

 how many turns to make to untwist the axis (axes)

 in which direction to make the turns

A twist is when a motor has made more than 360° turn. Multiple twists can lead to
wire breaks and other irreparable damages.

Attention! Before applying the function, you have to untwist motor(s) manually as instructed in
the associated twist detection alert and taking into consideration the location of the arm axes.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 55 | 68

Request body: The function has no request body.

Response body: The function either notifies about successful completion of manual untwisting
or returns a twist detection alert.

HTTP status code Description Response schema/ type

200 OK Success String

500 Internal Server Error Robot error string String

503 Service Unavailable Robot emergency string String

Response content type: text/plain

Response examples:

 200 OK

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.19 Setting tool properties

Path:

POST/tool/info

Description: The function enables setting tool properties for collision detection purposes, in
particular:

 name — any random name of the work tool defined by the user (e.g., “gripper”).

 actual TCP position described as a set of the following properties:

 point—x, y, and z coordinates defining the offset (in meters) along the x, y, and z axes

accordingly from the original TCP (see GLOSSARY) after adding / changing the work

tool.

 rotation angles—roll, pitch, and yaw. Roll stands for the actual TCP rotation angle
around the x axis; pitch—the actual TCP rotation angle around the y axis; yaw—the
actual TCP rotation angle around the z axis. All rotation angles are in radians and
relative to the physical center point of the arm base.

Related REST API functions: GET/TOOL/INFO, GET/TOOL/SHAPE, POST/TOOL/SHAPE

Request content type: application/json, text/plain

Request body: The request body is in accordance with the TOOL INFO SCHEMA.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 56 | 68

Request example:
{

 "name": "gripper",

 "tcp": {

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

 }

}

Response content type: application/json, text/plain

Response body:

HTTP status code Description
Response schema/

type

200 OK TOOL INFO SCHEMA TOOL INFO SCHEMA

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Robot error string String

Response examples:

 200 OK
{

 "name": "gripper",

 "tcp": {

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

 }

}

 400 Bad Request
[

 "Incorrect format of input Message"

]

 412 Precondition Failed
[

 "Unreachable Position",

 "Collision detected",

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 57 | 68

 500 Internal Server Error
[

 "Robot does not respond"

]

3.2.20 Setting the tool shape

Path:

POST/tool/shape

Description: The function enables setting tool shape for collision detection purposes by
defining the following properties:

 radius — radius of the work tool (in meters) measured from its physical center point.

 begin — the start x, y, and z coordinates of the work tool capsule measured as a distance
(in meters) from the original TCP.

 finish — the end x, y, and z coordinates of the work tool capsule measured as a distance
(in meters) from the original TCP.

Related REST API functions: GET/TOOL/INFO, GET/TOOL/SHAPE, POST/TOOL/INFO

Request content type: application/json, text/plain

Request body: The request body is in accordance with the TOOL SHAPE SCHEMA.

Request example:
{

 "shape": [

 {

 "radius": 0.5,

 "begin": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "finish": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 }

 }

]

}

Response content type: application/json, text/plain

Response body:

HTTP status code Description
Response schema/

type

200 OK TOOL SHAPE SCHEMA TOOL SHAPE SCHEMA

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Robot error string String

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 58 | 68

Response examples:

 200 OK
{

 "shape": [

 {

 "radius": 0.5,

 "begin": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "finish": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 }

 }

]

}

 400 Bad Request
[

 "Incorrect format of input Message"

]

 412 Precondition Failed
[

 "Unreachable Position",

 "Collision detected",

]

 500 Internal Server Error
[

 "Robot does not respond"

]

3.2.21 Setting a new zero point position

Path:

POST/base

Description: The function enables setting a new zero point position of the robotic arm as required
for the current user environment (e.g., considering the surrounding obstacles). The new zero point
position is described as a set of x, y, and z coordinates, as well as roll, pitch, and yaw rotation
angles.

The coordinates define the desired offset (in meters) from the physical center point of the arm
base (original zero point) along the x, y, and z axes accordingly. Roll stands for the rotation angle
around the x axis; pitch—the rotation angle around the y axis; yaw—the rotation angle around the
z axis. All rotation angles are in radians and relative to the physical center point of the arm base.

Related REST API functions: GET/BASE

Request content type: application/json

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 59 | 68

Request body: The request body is in accordance with the POSITION SCHEMA. It specifies the
coordinates and rotation angles of the new zero point.

Request example:
{

 "point": {

 "x": 0.3,

 "y": -0.4,

 "z": 0.2

 },

 "rotation": {

 "roll": 3.14,

 "pitch": 0,

 "yaw": 0.5

 }

}

Response content type: application/json, text/plain

Response body:

HTTP status code Description
Response schema/

type

200 OK Success String

400 Bad Request Message parsing error String

412 Precondition Failed Incorrect input parameters String

500 Internal Server Error Robot error string String

Response examples:

 200 OK

 400 Bad Request
[

 "Incorrect format of input Message"

]

 412 Precondition Failed
[

 "Unreachable Position",

 "Collision detected",

]

 500 Internal Server Error
[

 "Robot does not respond"

]

3.2.22 Enable Freedrive Mode

Path:

PUT/zg/on

Description: Makes Freedrive mode available. After activation, you can press and hold
specific button that is described in user manual and move the robotic arm "by-hand".

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 60 | 68

Related REST API functions: PUT/ZG/OFF

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK -

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.2.23 Disable Freedrive Mode

Path:

PUT/zg/off

Description: Disables Freedrive mode activation.

Related REST API functions: PUT/ZG/ON

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK -

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 61 | 68

3.3 Requests to delete parameters of the arm (DELETE)

3.3.1 Removing all obstacles from the arm environment

Path:

DELETE/environment

Description: The function removes preset obstacles from the environment of a robotic arm. An
obstacle is any object, such as a control box or a wall, in the way of an arm to be taken into
consideration for collision detection.

After a power-off, any obstacle settings for a specific environment are reset to
defaults (cleared from the device memory).

Related REST API functions: GET/ENVIRONMENT, GET/ENVIRONMENT/{OBSTACLE},

PUT/ENVIRONMENT, DELETE/ENVIRONMENT/{OBSTACLE}

Request body: The function has no request body.

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK Success

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.3.2 Removing a specific obstacle from the arm environment

Path:

DELETE/environment/{obstacle}

Description: The function enables removing a single preset obstacle as specified in the
{obstacle} parameter from the environment of a robotic arm.

ATTENTION! SPECIFYING THE {obstacle} PARAMETER IS MANDATORY!

An obstacle is any object, such as a control box or a wall, in the way of an arm to be taken into
consideration for collision detection.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 62 | 68

Related REST API functions: DELETE/ENVIRONMENT, GET/ENVIRONMENT,

GET/ENVIRONMENT/{OBSTACLE}, PUT/ENVIRONMENT

Request body: The function has no request body.

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK Success

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 500 Internal Server Error
[

 "Robot does not respond"

]

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

3.3.3 Removing stop bindings

Path:

DELETE/stop

Description: The function unbinds stop execution from inputs.

Related REST API functions: DELETE/ENVIRONMENT, GET/ENVIRONMENT,

GET/ENVIRONMENT/{OBSTACLE}, PUT/ENVIRONMENT, STOP, /stop/bind/{port}/high,
/stop/bind/{port}/low

Request body: The function has no request body.

Response content type: text/plain

Response body:

HTTP status code Response schema/ type

200 OK Success

500 Internal Server Error Robot error string

503 Service Unavailable Robot emergency string

Response examples:

 200 OK

 500 Internal Server Error
[

 "Robot does not respond"

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 63 | 68

 503 Service Unavailable
[

 "Robot unavailable in emergency state"

]

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 64 | 68

ANNEX 1. RESPONSE/ REQUEST SCHEMAS
The Annex contains schemas for structuring the API requests and responses described in the
above sections.

Position schema

Object Properties Example

Point
x: double number (meters)
y: double number (meters)
z: double number (meters)

{

"x": 0.3,

"y": -0.4,

"z": 0.2

}

Rotation
roll: double number (radians)
pitch: double number (radians)
yaw: double number (radians)

{

"roll": "3.14",

"pitch": "0",

"yaw": "0.5"

}

Pose schema

Object Property Example

Angles Double numbers (degrees)

{

"angles": [

"61",

"-98",

"-122",

"-49",

"89",

"-28"

]

}

Motor status array schema

Property Property content Example

Angle Double number (degrees)

{

"angle": "168.89699",

"rotorVelocity": "-0.00064343837",

"rmsCurrent": "0.01",

"voltage": "47.795017",

"phaseCurrent": "0.01",

"statorTemperature": "27.990631",

"servoTemperature": "31.739925",

"velocityError": "-0.022674553",

"velocitySetpoint": "-0.02331799",

"velocityOutput": "0.01",

"velocityFeedback": "-0.00064343837",

"positionError": "0.0385437",

"positionSetpoint": "168.93799",

"positionOutput": "0.01",

"positionFeedback": "168.89944",

}

Rotor velocity Double number (RPM)

RMS current Double number (Amperes)

Voltage Double number (Volts)

Phase current Double number (Amperes)

Stator temperature Double number (degrees C)

Servo temperature Double number (degrees C)

Velocity error Double number (RPM)

Velocity setpoint Double number (RPM)

Velocity output Double number (Amperes)

Velocity feedback Double number (RPM)

Position error Double number (degrees)

Position setpoint Double number (degrees)

Position output Double number (RPM)

Position feedback Double number (degrees)

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 65 | 68

Tool info schema

Object Property content Examples

Name String

{

"name": "gripper",

}

TCP TCP

Point
x: double number (meters)
y: double number (meters)
z: double number (meters)

{

"x": "0.3",

"y": "-0.4",

"z": "0.2"

}

Rotation
roll: double number (radians)
pitch: double number (radians)
yaw: double number (radians)

{

"roll": "3.14",

"pitch": "0",

"yaw": "0.5"

}

Tool shape schema

Object Property content Examples

Shape

radius: double number (meters)
begin:
x: double number (meters)
y: double number (meters)
z: double number (meters)
finish:
x: double number (meters)
y: double number (meters)
z: double number (meters)

{

“shape”: [

{

"radius": 0.5,

"begin": {

"x": 0.3,

"y": -0.4,

"z": 0.2

 },

"finish": {

"x": 0.3,

"y": -0.4,

"z": 0.2

 }

}

The figure below is an illustration of a defined tool shape — CAPSULE.

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 66 | 68

Obstacle schema

Object (property) Property content Examples

Obstacle type
Name

String enum: [BOX, CAPSULE,
PLANE] String

{

"obstacleType": "BOX",

"name": "workspace"

}

BOX

Obstacle type
Name

Sides
Point

Center position
Point

Rotation

obstacleType: string
name: string

x: double number (meters)
y: double number (meters)
z: double number (meters)

x: double number (meters)
y: double number (meters)
z: double number (meters)

roll: double number (radians)
pitch: double number (radians)
yaw: double number (radians)

{

"obstacleType": "BOX",

"name": "first_box",

"sides": {

 "x": 0.3,

"y": -0.4,

"z": 0.2

 },

"centerPosition": {

"point": {

"x": 0.3,

"y": -0.4,

"z": 0.2

 },

"rotation": {

"roll": 3.14,

"pitch": 0,

"yaw": 0.5

 }

 }

 }

CAPSULE

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 67 | 68

Obstacle type
Name
Radius
Point

Point

obstacleType: string
name: string
radius: double number (meters)
startPoint:
x: double number (meters)
y: double number (meters)
z: double number (meters)

endPoint:
x: double number (meters)
y: double number (meters)
z: double number (meters)

{

"obstacleType": " CAPSULE",

"name": "first_capsule",

"radius": 0.5,

"startPoint": {

"x": 0.3,

"y": -0.4,

"z": 0.2

 },

"endPoint": {

"x": 0.3,

"y": -0.4,

"z": 0.2

 }

}

PLANE

Obstacle type
Name
Point

obstacleType: string
name: string
points:
x: double number (meters)
y: double number (meters)
z: double number (meters)

{

"obstacleType": "PLANE",

"name": "first_plane",

"points": [

 {

"x": 0.3,

"y": -0.4,

"z": 0.2

 }

]

 }

Version schema

Object Property content Examples

Version

{ "motorsVersion": [
"string"
],
"safetyVersion": "string",
"usbCanVersion": "string",
"wristVersion": "string"
}

{ "motorsVersion": [

"string"

],

"safetyVersion": "string",

"usbCanVersion": "string",

"wristVersion": "string"

}

System status schema

Object Property content Examples

State

 "state":
string enum. [INITIALIZING,
INITIALIZATION_FAILURE, TWISTED,
ACTIVE, MOTION, ZERO_GRAVITY,
JOGGING, BROKEN, EMERGENCY]
 "message": "string"
}

{

 "state": [

 "INITIALIZING",

 "INITIALIZATION_FAILURE",

 "TWISTED",

 "ACTIVE",

 "MOTION",

 "ZERO_GRAVITY",

 "JOGGING",

 "BROKEN",

 "EMERGENCY"

],

 "message": "string"

}

Jogging acceleration schema

Object Property content Examples

ROZUM ROBOTICS API REFERENCE GUIDE

Rev.10, valid from 07.2020 Page 68 | 68

Acceleration

x: number (double)
y: number (double)
z: number (double)
rx: number (double)
ry: number (double)
 rz: number (double)

{

 "acceleration" : {

 "x" : 1

 "y" : -0.5

 "z" : 0

 "rx" : 0

 "ry" : 0.5

 "rz" : -0.1

 }

}

Robot info schema

Object Property content Examples

Robot info

model: string
version: string
serialNumber: string

{

 "model": "pulse75",

 "version": "2.4.0",

 "serialNumber": "18-00604"

}

